
STORMWATER MANAGEMENT REPORT

Hawk's Landing Condominiums Jills Drive/Garden Prairie Drive CITY OF WAUKESHA, WISCONSIN

May 3, 2024 Revision #1: August 26, 2024 Revision #2: November 18, 2024

> PREPARED FOR: Standarksi Builders 720 N. East Ave Waukesha, WI 53186

PREPARED BY: Parish Survey & Engineering, LLC 122 Wisconsin Street, West Bend, WI 53095

ES-10-23

PARISH SURVEY & ENGINEERING

122 Wisconsin Street | West Bend, WI 53095 www.parishse.com

TABLE OF CONTENTS

Introduction	1
Design Standards	1
Existing Site Conditions	3
Proposed Site Conditions	3
Summary of Results & Cost Estimate	4
Conclusion	5

APPENDICES

- A. Location Map
- Soils Information B.
- C. Existing Site Conditions
- Drainage Map
 Drainage Map
 HydroCAD Reports
 Proposed Site Conditions

 - Drainage Map
 HydroCAD Reports
- TSS Reduction Calculations E.
- Storm Sewer Sizing Calculations & HGL Calculations F.
- G. Stormwater Management Maintenance Agreement

Civil Design Plans are provided as a separate attachment.

INTRODUCTION

This project is located in the City of Waukesha between the east end of Jills Drive and the west end of Garden Prairie Drive. A new private roadway will be constructed to connect the dead-end roads of Jills Drive and Garden Prairie Drive. This new private road will service six (6) new condominiums – total of 12 units – to be developed on the vacant parcels.

Stormwater discharge will be managed through one (1) wet pond located on the south side of the new development, two (2) bio-filters located centrally in the development, and one (1) rain garden located on the north end.

DESIGN STANDARDS

The target design criteria for the stormwater management facilities proposed in this report follow the City of Waukesha Chapter 32 Storm Water Management and Erosion Control and the Wisconsin NR 151 Runoff Management requirements.

Peak Discharge – NR 151.123

By design, BMPs shall be employed to maintain or reduce the 1-year, 24-hour and the 2-year, 24-hour postconstruction peak runoff discharge rates to the 1-year, 24-hour and the 2-year, 24-hour pre-development peak runoff discharge rates respectively, or to the maximum extent practicable.

City of Waukesha Chapter 32

To minimize downstream bank erosion and the failure of downstream conveyance systems, the calculated post-development peak storm water discharge rate shall not exceed the calculated pre-development discharge rates for the 1-year, 2-year, 10-year, and 100-year, 24-hour design storms.

Stormwater Quality – NR 151.122

For new development, by design, reduce to the maximum extent practicable, the total suspended solids load by 80%, based on an average annual rainfall, as compared to no runoff management controls. No person shall be required to exceed an 80% total suspended solids reduction to meet the requirements of this subdivision.

City of Waukesha Chapter 32

For new land development and in-fill development, 80% reduction in total suspended solids load

Infiltration – NR 151.124

Moderate imperviousness. For development with more than 40 percent and up to 80 percent connected imperviousness, such as medium and high density residential, multi-family development, industrial and institutional development, and office parks, infiltrate sufficient runoff volume so that the post-development infiltration volume shall be at least 75 percent of the pre-development infiltration volume, based on an average annual rainfall. However, when designing appropriate infiltration systems to meet this requirement, no more than 2 percent of the post-construction site is required as an effective infiltration area.

City of Waukesha Chapter 32

For >40% up to 80% connected impervious surface – medium imperviousness – the post-development infiltration volume shall be 75% of predevelopment, with the maximum effective infiltration area of 2% of the site.

Protective Areas – NR 151.125

Impervious surfaces shall be kept out of the protective area entirely or to the maximum extent practicable. If there is no practical alternative to locating an impervious surface in the protective area, the storm water management plan shall contain a written, site-specific explanation.

Where land disturbing construction activity occurs within a protective area, adequate sod or selfsustaining vegetative cover of 70 percent or greater shall be established and maintained where no impervious surface is present. The adequate sod or self-sustaining vegetative cover shall be sufficient to provide for bank stability, maintenance of fish habitat, and filtering of pollutants from upslope overland flow areas under sheet flow conditions. Non-vegetative materials, such as rock riprap, may be employed on the bank as necessary to prevent erosion such as on steep slopes or where high velocity flows occur. Best management practices such as filter strips, swales, or wet detention ponds, that are designed to control pollutants from non-point sources, may be located in the protective area.

City of Waukesha Chapter 32

The following requirements shall be met for all land development activity located within a protective area:

- Impervious surfaces shall be kept out of the protective area entirely, or to the maximum extent
 practicable, except for structures, as authorized and defined under shoreland and floodland zoning.
 If there is no practical alternative to locating a nonexempt impervious surface in the protective area,
 the storm water management plan shall contain a written, site-specific explanation and a technical
 exemption may applied for under sub. (e) below. The erosion control plan shall contain a written
 site-specific explanation for any parts of the protective area that are disturbed during construction.
- 2. Where land disturbing activity occurs within a protective area, and where no impervious surface is present, adequate sod or self-sustaining vegetative cover of 70% or greater shall be established and maintained. The adequate sod or self-sustaining vegetative cover shall be sufficient to provide for bank stability, maintenance of fish habitat and filtering of pollutants from upslope overland flow areas under sheet flow conditions. Non-vegetative materials, such as rock riprap, may be employed on the bank as necessary to prevent erosion, such as on steep slopes or where high velocity flows occur.
- 3. Best management practices such as filter strips, swales, or wet detention basins that are designed to control pollutants from non-point sources may be located in the protective area, but shall not encroach into wetlands, floodplains or primary or secondary environmental corridors.

Method of Analysis

The storm water runoff rates and quantities have been analyzed using HydroCAD® software, using the United States Department of Agriculture Soil Conservation Service Technical Release 55 (TR-55) methodology. The MSE 3, 24-hour rainfall distribution curve was used for the calculations.

The selected design storms were based on section 32.11 Technical Standards and Specifications of the City of Waukesha Chapter 32 Stormwater Management and Erosion Control.

Table 1 – Ra	infall Amounts
--------------	----------------

Rainfall Amounts							
Recurrence Interval (Year)	Rainfall Depth (in)						
1	2.40						
2	2.70						
10	3.81						
100	6.18						

TSS reduction results for the areas disturbed, as well as the areas draining to the ponds were analyzed with WinSLAMM Source Loading and Management Model. The "Milwaukee 1969" rainfall file was used with the winter season between December 15th to March 28th.

EXISTING SITE CONDITIONS

The existing parcel is vacant land consisting of wetland, woodland, and grassed area. There is an existing sanitary and storm sewer easement that runs along the west side of the parcel, as well as an existing 40-foot sanitary, watermain, and access easement running east-west through the property. The wetland was delineated by Wetland & Waterway Consulting, LLC in May of 2021.

An existing sanitary sewer main and watermain that connect Jills Drive and Garden Prairie Drive are within the 40-foot easement that travels through the parcel. The existing watermain already has several 1-1/4" HDPE services connected as well. There are also two (2) storm sewer inlets on the west side of the property within that same easement.

Majority of the existing site drains to the wetland to the south, and a small portion drains to the existing storm inlets, connecting to the City's storm sewer.

For this new development, the existing Outlots 1 & 2 are proposed to be combined into a single lot with a new CSM. The owner for both parcels is the same entity.

PROPOSED SITE CONDITIONS

The proposed development consists of a new private roadway that will connect Jills Drive and Garden Prairie Drive. This new roadway will consist of 11-foot lanes, 30-inch curb and gutter, and a 5-foot-wide sidewalk on the north side of the road. The roadway will have a larger width to tie into Jills Drive and then will bottle-neck down over a 30-foot taper to the narrower width of the private roadway. There are six (6) condominium buildings - a total of 12 condominium units - proposed for this new development. There is mountable curb along the entire new private roadways to access the houses with new sidewalk along one side of the roadway.

Six (6) individual driveways will have direct access off this private driveway for three (3) of the new condominium buildings. There will be another private access off the new private roadway that runs south with an east-west tee at the south end to access the other three (3) buildings/six (6) condominium units. Each unit has an 18-foot-wide driveway that leads to the connected two-car garage, and a concrete sidewalk that connects the driveway to the front door. There are also six (6) additional parking spaces provided within the development.

To maintain existing site drainage patterns, the majority of the runoff from the development is directed to the south wet pond, which discharges to the south wetland. The wet pond high water elevation remains outside of the existing sanitary and storm sewer easement. There are two (2) bio-filters proposed between two sets of condominium, which discharge to the wet pond through a storm sewer network. There is also a proposed rain garden at the north end of the property to manage water quality and quantity from the one (1) north condominium building, which overflows to the City's storm sewer.

The private roadway is managed by the existing storm inlets, which were installed to manage street runoff. The four (4) out of the six (6) driveways that drain to the private roadway are also captured by the City's storm sewer. These portions of the development do not have any additional stormwater BMPs implemented since the storm inlets already exist. However, the entire remainder of the development is managed by the multiple BMPs mentioned above.

SUMMARY OF RESULTS

Stormwater Quantity

With the implementation of the wet pond, two (2) bio-filters, and rain garden, the proposed development is able to meet stormwater quantity requirements. Below is a summary of the run-off rates for the existing and proposed conditions. Drainage area maps, along with the HydroCAD® results can be found in Appendices C and D.

Rain Event	Pre-Dev. Runoff (cu-ft/sec)	Post-Dev. Runoff (cu-ft/sec)
1-year	0.66	0.35
2-year	1.06	0.51
10-year	2.92	1.24
100-year	7.98	3.71

Table 2 - Water Quantity Results

As shown in the table above, the site total site maintains or lowers the runoff discharge rate as compared to the existing condition.

Stormwater Quality

The post construction stormwater quality requirement for this project are met using the standard design procedure. The proposed pond, bio-filters, rain garden, swales, and filter strips will provide greater than 80% TSS reduction for the proposed development area. Appendix E contains the details of the calculations.

Table 3 - Water Quality Results

Area	Total Influent Load (lbs)	Total Effluent Load (lbs)	TSS Reduction
North	377.3	75.24	80.06%

Infiltration

This site is exempt from infiltration requirements due to the poor soil conditions. Soil test pit data is provided in Appendix B showing the infiltration rates being significantly less than 0.6 inches/hour.

Protective Areas

As previously stated, there are delineated wetlands present within this property. There is 1,092 square-feet of proposed wetland fill due to the need to grade out into the wetland area. However, there is no impervious area proposed within the wetland. A DNR General Wetland Fill permit will be applied for to be allowed to fill the proposed 1,092 square-feet as shown on the plans.

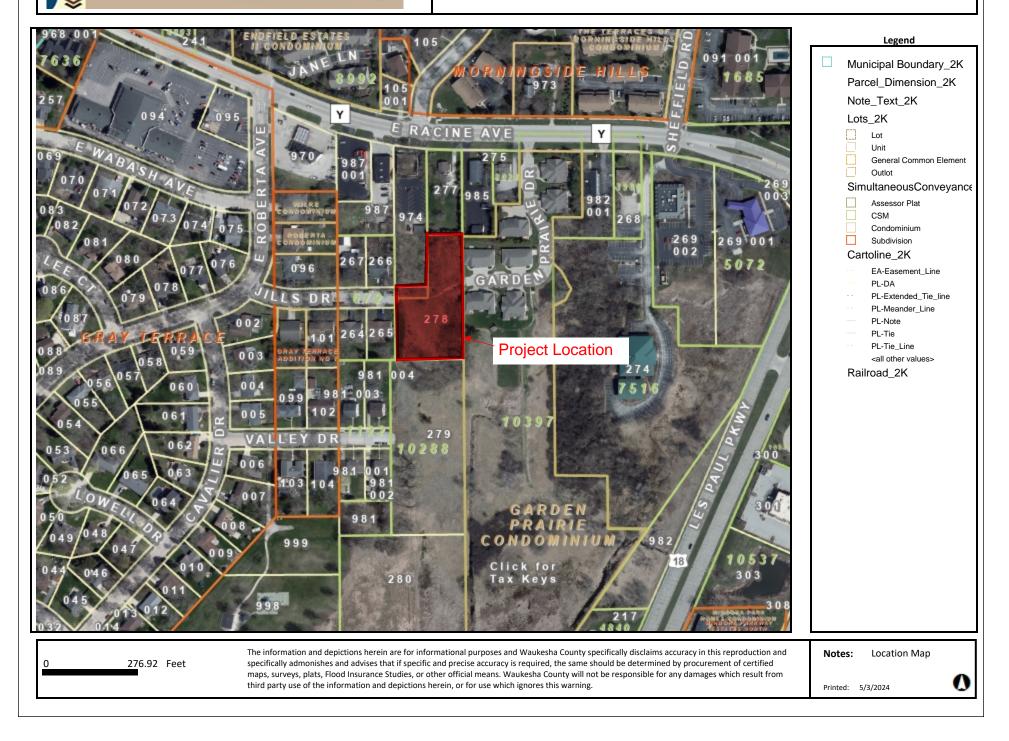
Cost Estimate for Stormwater Management BMPs

The estimated cost for the wet pond, two (2) bio-filters, one (1) rain garden, and all associated outlet structures is \$150,000. The cost estimate is broken down in lump sum values below:

- Wet Pond: \$100,000
- Wet Pond Outlet Structure: \$20,000
- Bio-Filter, Each: \$10,000 (two total = \$20,000), includes standpipe outlet structure
- Rain Garden: \$10,000, includes standpipe outlet structure

CONCLUSION

The stormwater management system for the proposed development will meet the post-construction stormwater requirements for the City of Waukesha and the Wisconsin DNR. The proposed stormwater management system improves the run-off rates from the site. Additionally, the infiltration requirement is exceeded, as well as the storm water quality requirements controlled at a greater rate than required per municipal code and the State Statute.


Appendix A Location Map

PARISH SURVEY & ENGINEERING

122 Wisconsin Street | West Bend, WI 53095 www.parishse.com MAP WAUKESHA county

Waukesha County GIS Map

Appendix B Soils Information

PARISH SURVEY & ENGINEERING

122 Wisconsin Street | West Bend, WI 53095 www.parishse.com Levake Soil Testing LLC

Jeff Levake P.O. Box 568 Lake Mills, WI 53551 920-648-7566

Bill T	o			
PSE			 -	
122 Wi	sconsin	St		
West B	end, W	1 53095		

Date	Invoice #
8/19/2024	3931

			P.O. No.	Terms		Project	
			1 1 1 1 N	Due on rece	ae on receipt		
Quantity		Description		-	Rate	Amount	
1 Soil Test f	or St Paul job with 6	test pits & drive time.			1,050 00	1,050 00	
ink you for your business	5% Interest Charge	ed Per Month After 30 Day	5	То		\$1,050	

Invoice

Attachment 2:

SOIL AND SITE EVALUATION - STORM

1002-CPS-23 Division of Industry Services P. O. Box 2658 Madison, Wisconsin 53701 Scott Walker, Governor Laura Gutierrez, Secretary

In accordance with SPS 382.365, 385, Wis. Adm. Code, and WDNR Standard 1002

		Page 1 of 2
Attach a complete site plan on paper not less than 8 ½ x Plan must include, but not limited to: vertical and hcrizon (BM), direction and percent of slope, scale or dimensions BM referenced to nearest road Please print all information Property Owner	ital reference point s, north arrow, and	County Wankreshn Parcell,D, WAKC 1342278 Reviewed by: Date:
Property Owner <u>St Paul Condominiums</u> Property Owner Mail Address	Property Location Govt. Lot NW14 SW14	
City State Zip Code Phone Number Naulsreha, WI 53186	Lot # Block # So Def City Utilage Wange esta	10288 10288 □ Town Nearest Road St.115 DC
Drainage area 🔲 sq. ft 🔲 acres Test site suitable for (check all that apply): 📄 Site not suitable; Bioretention; 📄 Subsurface Dispersal System; Reuse; 📄 Irrigation; 📄 Other	Hydraulic Application Te Method V Morphologi Evaluation Double Rin Infitrometer	cal USDA-NRCS WETS Value: g

TP] #OBS. DPit Dering Ground surface elevation. 868.57ft. Elevation of limiting factor 868, 57 ft.

Horizon	Depth in	Dominant Color Munsell	Redox Description Qu. Sz. Cont. Color	Texture	Structure Gr. Sz. Sh.	Consistence	Boundary	% Rock Frags	% Fines	Hydraulic App Rate Inches/Hi
1	0-96	1098 H/H	Mixed Fill	CI	OM	mfr	(5	15	-	02
2	96-108	10 YR 3/2	FIF 1,54831	511	Zmar	mfr	-	5	-	.03
			70 7.777				-			
	-									
-						1				
Comme			1 K 10 1 1 1 1 1 1 1					- E		

Horizon	Depth	Boring Ground Dominant Color Munsell	Redox Description Qu. Sz. Cont. Color	Texture	Elevation of lim Structure Gr. Sz. Sh.	Consistence	<u>Boundary</u>	% Rock	% Fines	Hydroulic App
1	0.96	IUTR 4/1	Mixed Fill	c1	Q ha	mfr	69	Frags.	-	Rate Inches/Hr
2	96-108	10YR 312	HE 7.548 38	sil	Zmgr	mfr.	-	5	-	,13
						-				
				-						
Commer	nts. IA)	ater obser	und @, 108"							
	lease Print)	Seffrey T. Le	vake		ature Sup ?	e f	r		edential N # 2233	
lddress	P.O. Box	568 Lakel	Mills, WT 5355	1		luation Conduct 5-76-24	led		-988-75	
			/					SBC	-10793 (F	801/17)

5 #08S			8199	19 0	Elevation of limit	ting factor <u>867</u> .	89 n		Page	<u></u>
Horizon	Depth	Boring Ground Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	% Fines	Hydraulic App Rate inches/H
	in.	Munsell	Qu. Sz. Cont. Color		Gr. Sz. Sh.	- 1		Frogs.		,05
1	Q-64	10YA 4/4	Mixed Fill	cl	Om	Mfr	C5.	15	-	
2	64-108	INTE WIZ	C2d 10 48 712	501	1msbla	mfr	~	15		.07
					1					
			-							1
						. D				
Commer	WA:	tor observed	@ 99"							5
4 #OBS			surface elevation 862	75 n	Elevation of limi	ting factor <u>\$69</u>	75 n	13.	. ·	
Horizon	Depth	Dominant Color Munsell	Redox Description Qu. Sz. Cont. Color	Texture	Structure Gr. Sz. Sh.	Consistence	Boundary	% Rock Frags	% Fines	Hydraulic App Rate Inches/H
1	0-64		Mixed Fill	cl	OM	mfr	(9	15	-	103
Z	64-108		CZd 7.543 5/8	50/	Imakk	mfr	-	15	-	.07
			1.					5		
							1			
-	1.1		1	A			5 N 1			
5 #OB	Depth	Dominant Color	Redox Description	5 n. Texture	Elevation of Ilmi Structure Gr. Sz. Sh.	ting factor 87 Consistence	Boundary	% Rock Frags	% Fines	Hydraulic App Rate Inches/h
	n. 0-40	104B 4/4	Qu sz. Cont. Color Milyyd Fill	c1	Om	mfr	C5	15	~	,03
2	40 48	104A 3/2		511	Imar	mFr	69	5	-	. 13
3	48.72	1049 4/4	CZd 049 7/2	Scl	Imsph	mfr	2W	5	-	.11
<u> </u>	77-120	1041 1/4 104R 5/4	11 11 11	ars	() 20	ml	-	15	-	3.6
Ч	12-10	IVIA JIM	-	<i>.</i>	5					
				-1	- 2				1	
Commer	nts:			L		101	1.00			
_		31		-		ורס	5.			1
2 #08S	-		surface elevation 87/	5 ft. Texture	Elevation of lim Structure	iting factor <u>87/</u> Consistence	Boundary	% Rock	% Fines	Hydraulic Ap
Horizon	Depth In	Dominant Color Munsell	Redox Description Qu. Sz. Cont. Color	lexidie	Gr Sz. Sh.			Frags.	-	Rate Inches/
1	0-40	10YR W/4	Mixed Fill	c1	Om	mfr	<u> </u>	15	-	.03
2	40-48	101R 3/2	17.54R 5/2	51	Imar	mer	50 9W	5	-	11
3	18-72	JOYR HIH	(20 7.54R 5/2 (20 10 1R 7/2	56	Inable		200	15	-	3.6
Ч	72-170	104R 5/4	N //	9r5	059	m				1 - 4
									1	
omment	te									

SBD-10793 (R 7/17)

Overall Site Comments:

WDNR September 2017

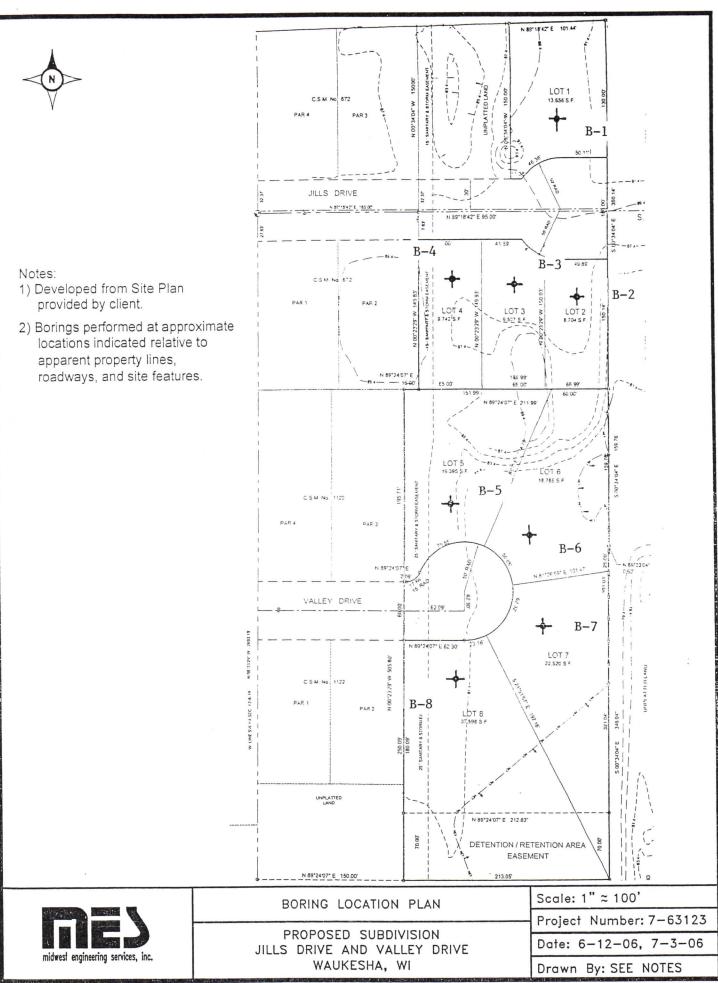


Figure 1

Location: Waukesha, Wisconsin

Project No.: 7-63123 Drill Date: July 3, 2006 Drilled by: Pete Rotaru Logged by: Ed Weiberg

	th Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	MC	PID	Remarks	
Surfac	ce/Elev. (ft)	Ground Surface Elevation: 90.6	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)		
1	896 —	Note A	1-AU	-	-	-	7	-		
2	886 —									
-	_								-	
3-	876		2-SS	37*	-	-	3] -	
4	BE 6 —								1 -	
5 -	85.6	Brown-Gray SAND and GRAVEL with Cobbles, Damp								
6 —	846	(Possible FILL)	3-SS	50/6"*	-	-	3		Poor Sample -	
7 —	836									
8-	826-		4-SS	20*			4		Poor Sample	
9_	816-		4-55	36*		-	4			
10 _	80.6 -		-							
11_	796		5-SS	14	-		7		<u> </u>	
12-	786	Brown Silty Medium SAND and GRAVEL, Very Moist							1 _	
13	77 6								-	
14	766								· ·	
	-									
15 -	75.6 -						- 10			
16-	746	Brown Coarse SAND and GRAVEL, Wet	6-SS	7	-	-	13			
17	73.6 —									
18	72.6								_	
19	71.6									
20 -	70.6		-							
21	69.6 —		7-SS	7	-	-	19			
22	68.6									
23-	67.6 —	Gray Silty Fine SAND, Wet							-	
24	66.6									
25 _	65.6 -									
26	64.6 —	Gray Sandy SILT, Wet	8-SS	4	-	-	22		1 -	
		End of Boring: 26½'								
Notes:		<u> </u>								
	Note A: 4"+/-	Brown Silty SAND and GRAVEL with Root Matter, Damp (Possible	TOPSOIL F	TILL)						
	1/2 :		Addition							
11	Water Level / Caving Observations: Additional Comments: Water Level _{During Drilling} : 11 ± ft (EI. 79.6±) V *N value may be elevated due to cobbles and boulders									
	Water Level Upon Completion: Dry									
11	Caved at Upon Completion: 6.5 ± ft (El. 84.1±)									
L										

Location: Waukesha, Wisconsin

Project No.: 7-63123 Drill Date: July 3, 2006 Drilled by: Pete Rotaru Logged by: Ed Weiberg

	h Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	MC	PID	Remarks
Surfac	e/Elev. (ft)	Ground Surface Elevation: 87.7	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	Remarks
1	86.7	Note A	1-AU	-	-	-	11	-	-
-	-								-
2-	85.7 —								
3-	84.7		2-SS	7	2.25	-	16	-	
4	83 7 —	Brown and Gray Silty CLAY with Sand and Gravel, trace Asphalt Fragments, Damp (FILL)							
5 -	82.7								_
6	81.7		3-SS	6	-	-	14	-	_
7	80 7 —								
е <u>–</u>	797 —	Black Sandy SILT, Damp to Moist (Buried TOPSOIL)	1						
9_	787 —		4-SS	9	-	-	133	-	
10 -	77.7								⊻ <u>-</u> ⊻
- 11	76.7		5-SS	9	-	-	10	-	<u> </u>
12	757								_
13	74.7								-
	-								
14	737								
15 -	72.7								
16-	717	Brown to Gray Medium to Coarse Silty SAND and GRAVEL,	6-SS	24	-	-	9	-	
17-	70.7	Moist to Wet at 15'							
18-	69.7								
19-	68.7								_
20 -	67.7 -								
21	66.7 —		7-SS	23	-	-	10	-	1 _
22	65.7			1	İ	1	1		1 _
23	64.7								
24	63.7 —								_
25 _	62.7	2							
26	61.7	Gray Silty Fine SAND, Moist	8-SS	24	<u> </u>		20		-
	Salah dadalah sina Karata	End of Boring: 26½'					1 20		
Notes:									
r	Note A: 12"+/	- Dark Brown Silty SAND and GRAVEL, little Clay, Damp to Moist (T	OPSOIL FI	LL)					
	evel / Caving ater Level _{Dur}	Observations: ing Drilling: 10 ± ft (El. 77.7±) V	Additiona	I Comr	nents:				
	er Level _{Upon C}								
	aved at Upon C					3			
	opone								
			1						

Location: Waukesha, Wisconsin

Project No.: 7-63123 Drill Date: July 3, 2006 Drilled by: Pete Rotaru Logged by: Ed Weiberg

Dep	th Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	MC	PID		٦
	ce/Elev. (ft)	Ground Surface Elevation: 87.6	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	Remarks	
		Note A	1-AU	-	-	-	13	-		Ī
1	86.6 —	Brown Citty CAND, little Croupl, Domp (EUL)							-	\dashv
2	85.6 —	Brown Silty SAND, little Gravel, Damp (FILL)							-	_
3_	B4 6									_
-	-		2-SS	6	-	-	14	-	No Recovery	-
2	836 —	Brown Silty CLAY, trace to little Sand and Gravel, Damp to							-	-
5 —	82.6	Moist (FILL)								
6-	81.6 —		3-SS	7	-	-	16	-		-
7_	80.6	Black Silty CLAY, trace Sand, Moist, (Buried TOPSOIL)								_
8-	79.6		·							_
9_	786-	Gray-Brown Silty Medium to Coarse SAND and GRAVEL, Moist	4-SS	22	-	-	10	-	¥⊻.	-
-	-								V	-
10 -	77.6 -		ļ							
11	766		5-SS	13	-	-	10	-		-
12-	756									_
13-	746-									_
14	736									-
-	-	Orange-Brown Medium SAND and GRAVEL, trace to some								-
15 -	72.6	Silt, Very Moist							Poor	
16 —	71.6 —		6-SS	21	-	-	9	-	Recovery	-
17	706									_
18-	69.6 —									_
19-	68.6									_
	-									-
20 -	67.6								-	-
21	66.6		7-SS	17	-	-	19	-		
22-	65.6									-
23	64.6	Gray Silty Fine SAND, Wet								_
24	63.6	Gray Sitty Fine SARD, Wet								_
25 -	-	2								-
-	62.6								-	-
26	61.6 —		8-SS	15	-	-	19	-		_
End of Boring: 26½'										
Notes:										
	Note A: 9"+/-	Dark Brown Sandy CLAY, Moist (TOPSOIL FILL)								
								_		
11	Water Level / Caving Observations: Additional Comments: Water Level _{During Drilling} : 10 ± ft (El. 77.6±)									
	Water Level During Drilling:10 \pm ft (El. 77.6 \pm) \underline{V} Water Level Upon Completion:9 \pm ft (El. 78.6 \pm) \underline{V}									
	Caved at $_{Upon Completion}$: 11 ± ft (El. 76.6±)									
		vy Time: 4 hr(s)								
	Water Leve									
Caved at $_{delayed}$: 9.5 ± ft (El. 78.1±) after 4 hr(s)										

Estimated Fill, Peat and Groundwater Depths **Proposed Residential Development Jills Drive and Valley Drive** Waukesha, Wisconsin MES Project No. 7-63123

		Estimated	Estimated	Estimated	Estimated	Estimated	Ectimated
Boring No.	Ground Surface Elevation (a)	Fill and Buried Topsoil Depth (feet) (b)	Fill and Burled Topsoil Elevation (a)	Peat and Lake Marl Depth (feet) (b)	Peat and Lake Marl Elevation (a)	Groundwater Table Depth (feet) (b)	Ground Water Elevation (a)
В,	EL. 90.6±	10±	EI. 80.6±	I	1	11±	EI. 79.6±
B-2	EL. 87.7±	8.5±	EI. 79.2±	I	1	11±	EI. 76.7±
B-3	EL. 87.6±	7.5±	El. 80.1±	I	1	10±	EI. 77.6±
B-4	EL. 88.2±	6.5±	EI. 81.7±	1	1	9±	EI. 79.2±
B-5	EL. 83.5±	I	I	21±	EI. 62.5±	11.5±	EI. 72.0±
B-6	EL. 80.7±	1	1	13±	EI. 67.7±	9±	EI. 71.9±
B-7	EL. 80.4±	I	I	21±	EI. 59.4±	8±	El. 72.4±
B-8	EL. 83.4±	8±	EI. 75.4±	>26.5±	<ei. 56.9±<="" td=""><td>11±</td><td>EI. 72.4±</td></ei.>	11±	EI. 72.4±
		(a) Bacad on	around curface o	elevations inter	(a) Based on anound surface elevations internolated from the grading plan provided	ading plan provic	led

(a) Based on ground surface elevations interpolated from the grading plan provided.(b) Depth below existing grade.

Note: It must be recognized that the above depths/elevations are estimates and variation will likely be encountered in the field.

Location: Waukesha, Wisconsin

4

Project No.: 7-63123 Drill Date: July 3, 2006 Drilled by: Pete Rotaru Logged by: Ed Weiberg

Depth Below Surface/Elev. (ft) VISUAL SOIL CLASSIFICATION Ground Surface Elevation: 88.2 Sample No. N Qp Qu MC PID (%) Rem 1 67.2 86.2 Note A 1-AU - - 9 - 2 86.2 Brown Silty SAND and GRAVEL, Damp (FILL) Damp (FILL) Image: Constraint of the second sec	rks					
	-					
2 Brown Silty SAND and GRAVEL, Damp (FILL)	_					
	_					
3 85 2	_					
2-SS 9 19 -	-					
	_					
5 - 83.2 - Black Clayey SILT, Damp (Buried TOPSOIL)	_					
6 - 82 2 104 -						
7 812	_					
	<u> </u>					
4-SS 25 - 7 -	-					
	-					
11 77.2 5-SS 24						
	_					
	_					
	-					
	_					
15 - 73.2 -	_					
16 72 2 Brown-Gray to Brown Medium to Coarse SAND, trace to little 6-SS 14 - 12 -						
	_					
	-					
	-					
20 - 68.2 -						
21 67.2 7-SS 15 24 -	_					
	-					
25 - 63.2 -	-					
26 Brown Silty SAND, Wet 8-SS 19 23 -	_					
End of Boring: 261/2'						
Notes:						
Note A: 14"+/- Dark Brown Silty SAND and GRAVEL with Roots, Damp, (TOPSOIL FILL)						
Water Level / Caving Observations: Additional Comments:						
Water Level During Drilling:10 ± ft (El. 78.2±) \underline{V} Water Level Upon Completion:8 ± ft (El. 80.2±) \underline{V}						
Caved at $U_{\text{pon Completion}}$: 9 ± ft (EI. 79.2±)						
Delay Time: 5 hr(s)						
	Water Level delayed: $8 \pm ft$ (El. 80.2±) after 5 hr(s) \checkmark Caved at delayed: $8.5 \pm ft$ (El. 79.7±) after 5 hr(s)					

Location: Waukesha, Wisconsin

Project No.: 7-63123 Drill Date: June 12, 2006 Drilled by: Steve Gonyer Logged by: Tom

Dep	th Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	MC	PID	Remarks	
Surfac	ce/Elev. (ft)	Ground Surface Elevation: 83.5	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	Remarks	
-	-	Note A	1-AU	-	-	-	57	-	_	
	82.5									
2-	81.5	Dark Gray Silty SAND with Organics, Damp								
3 —	80.5		2-SS	2		-			Poor	
4	79.5		2-00						Recovery	
5 -	78.5 -								⊻ _	
6_	77 5		3-SS	3	-	-	416			
7_	765									
	-	Dark Brown to Black Fibrous PEAT, Moist							-	
8-	75.5		4-SS	2	-	-	77	-] -	
9	74.5									
10 -	73.5									
11-	72.5		5-SS	2	-	-	262	-	_	
12	71.5								1 -	
-3_	70.5	Gray Organic Clayey SILT with Sand and Shells, Moist (Lake								
	-	Marl)							-	
14	69.5 —								-	
15 -	68.5 -								· -	
16	67.5		6-SS	4	-	-	35	-		
17	66 5								Organic	
18	65.5	Dark Gray Clayey SILT, trace Organics, Very Moist (Lake Marl)							Content 4.1%	
19	64.5									
20 _	63.5 -									
-	62.5 -		- 7-SS	15	0.25			· ·		
21	-		1-33	1 15	0.25	-				
22-	61.5									
23-	60.5	Denverte Oren Citte CAND and ODAV/EL Mich							V -	
24	59.5	Brown to Gray Silty SAND and GRAVEL, Wet							· -	
25 -	58.5 -	20 								
26	57.5		8-SS	8	-	-	34	-	1 –	
		End of Boring: 26½'								
Notes:										
	Note A: 12"+	- Dark Brown to Black Silty SAND with Fibers, Damp (TOPSOIL)								
10		Observations:	Additiona	al Com	ments:					
0	Water Level During Drilling: $24 \pm ft$ (El. 59.5±) \underline{V} Water Level Upon Completion: $5 \pm ft$ (El. 78.5±) \underline{V}									
	Caved at _{Upon Completion} : 17 ± ft (El. 66.5±)									

Location: Waukesha, Wisconsin

Project No.: 7-63123 Drill Date: June 12, 2006 Drilled by: Steve Gonyer Logged by: Tom

Dept	h Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	MC	PID	
	e/Elev. (ft)	Ground Surface Elevation: 80.7	No.	(bpf)		(tsf)	(%)	(ppm)	Remarks
		Note A	1-AU	(()	-	165		
1-	79.7				-	-	105	-	_
2	78.7								
-	-								-
3	77.7		2-SS	2	-	-		-	Poor _
4	76 7 —								Recovery
5 -	75.7 -	Black Fibrous PEAT, Very Moist							
-	747		3-SS	1			225	<u> </u>	-
6	-		3-33	'			225		
7-	73.7								-
8	72.7								-
9_	71.7		4-SS	13	-	-	67	-	
10 -	-								-
10 -	70.7								
11-	69 7	Gray Clayey SILT with Shells, Very Moist (Lake Marl)	5-SS	11	-	-	39	-	
12	68.7								
13-	67 7								-
-	-	Gray Silty SAND and GRAVEL, Very Moist							-
14-	66 7		1						-
15 -	65.7								
16	64 7 —		6-SS	15	-	-	16	-	
17_	63.7								1 _
18	62.7								-
-	-								-
19-	61.7								
20 -	60.7	Brown to Brown-Gray Medium to Coarse SAND and GRAVEL with Sand Seams, trace to little Silt, Wet							
21-	59.7	with Sand Seams, trace to little Sht, Wet	7-SS	10	-	-	18	-	<u> </u>
22	58.7			1	1	1		1	1 _
23	57.7								-
- 1	-								-
24	56.7								
25 —	55.7 -								-
26	54.7 —		8-SS	15	-	-	10	-] _
		End of Boring: 261/2'							
Notes:									
1	Note A: 6"+/-	Black Clayey SILT, little Fibers, Moist (TOPSOIL)							
Water Level / Caving Observations: Additional Comments:									
	ater Level _{Dur}								
	er Level _{Upon C}								
C	aved at Upon C	completion: 4.5 ± ft (El. 76.2±)							
1			1						

Location: Waukesha, Wisconsin

Project No.: 7-63123 Drill Date: June 12, 2006 Drilled by: Steve Gonyer Logged by: Tom

	h Below	Sample	N	Qp	Qu	MC	PID	Remarks	
Surfac	e/Elev. (ft)	Ground Surface Elevation: 80.4	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	
-	-	Note A	1-AU	-	-	-	164	-	-
	794								
2-	784								
3 —	77 4 —		2-SS	1	-		55		
4	764	Black Organic Clayey SILT, trace to little Fibers, Moist (Lake	2-00						
5 _	75.4 -	Marl)							_
6-	74.4		3-SS	1	-	-	233	-	
7	734-								
- 1	-								-
8	724		4-SS	2	-	-	35	-] -
9-	714								1 -
10 -	70.4 —								
11_	69.4		5-SS	2	-	-	28	-	
12	68 4								
13 -	67 4								
14	66.4 —	O OL OUT LEAST L'UN Organize Maint (Labo							
	-	Gray Clayey SILT, trace to little Organics, Very Moist (Lake Marl)							-
15 _	65.4 -								Organic
16-	64.4		6-SS	4	-		36		Content 4.1%
17	63 4								
18-	62.4 —								
19-	61.4								-
20 -	60.4 -								
21	594 —		7-SS	10	-	-	22	-	1 ⊻ _
22	58.4				1	1	1	1	1 -
	-								
23-	57.4	Brown-Gray Medium to Coarse SAND and GRAVEL, trace Silt,							
24-	56.4	Very Moist							_
25 -	55.4 -								
26	54.4 —		8-SS	22	-	-	10	-	
		End of Boring: 26½'				×			
Notes:	Notes:								
	Note A: 12"+/- Black Silty SAND with Fibers and Root Mat, Damp (TOPSOIL)								
Water	evel / Caving	g Observations:	Addition	al Com	ments:				
0	/ater Level _{Du}								
0	Water Level During Drilling:21 ± ft (EI. 59.4±) \underline{V} Water Level Upon Completion:7 ± ft (EI. 73.4±) \underline{V}								
	Caved at Upon								

Location: Waukesha, Wisconsin

Project No.: 7-63123 Drill Date: June 12, 2006 Drilled by: Steve Gonyer Logged by: Tom

	th Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	MC	PID	Remarks
Surfac	ce/Elev. (ft)	Ground Surface Elevation: 83.4	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	
	82.4 —	Note A	1-AU	-	-	-	12	-	-
-	-								-
2-	81.4		-						-
3	80.4		2-SS	14	-	-	6	-	_
4-	79.4 —	Brown Silty SAND and GRAVEL, little Asphalt Fragments, Damp (FILL)							_
5 —	78.4 -								_
6-	774 —		3-SS	13	-	-	10	-	_
7	76.4								_
8_	754								_
9_	74.4 —		4-SS	6	-	-	336	-	-
10 _	73.4 _	Dark Brown to Black Fibrous PEAT, Moist							
	72.4		- 5-SS	5	-		74	-	-
12-	71.4								_
13	704	Gray Sandy SILT, trace Shells and Fibers, Moist (Lake Marl)							-
-	-	Gray Sandy SILT, trace Shens and Tibers, Moist (Lake Man)							-
14	69.4								-
15 -	68.4 -		1						
16	67.4		6-SS	4	0.5	-	49	-	
17	66 4								
18	65.4 —								
19-	64.4								_
20 -	63.4 -								_
21-	62.4	Gray Clayey SILT, trace to little Organics, Moist (Lake Marl)	7-SS	5	0.25	-	47	-	
22	61.4								
23	60.4								
24	59.4								
25 -	58.4 -								_
26	57.4		8-SS	3	-	-	35	-	1 -
	End of Boring: 26 ¹ / ₂ '								
Notes:									
Note A: 8"+/- Dark Brown to Black Silty SAND, little Fibers, trace Root Matter, Damp (TOPSOIL FILL)									
Water	evel / Caving	Observations:	Additiona	I Com	nente:				
	ater Level Dur								
Wat	Water Level Upon Completion: Dry								
C	Caved at _{Upon Completion} : 15.5 ± ft (EI. 67.9±)								
			JL						

GENERAL NOTES

SAMPLE IDENTIFICATION

Visual soil classifications are made in general accordance with the Unified Soil Classification System on the basis of textural and particle size categorization, and various soil behavior characteristics. Visual classifications should be substantiated by appropriate laboratory testing when a more exact soil identification is required to satisfy specific project applications criteria.

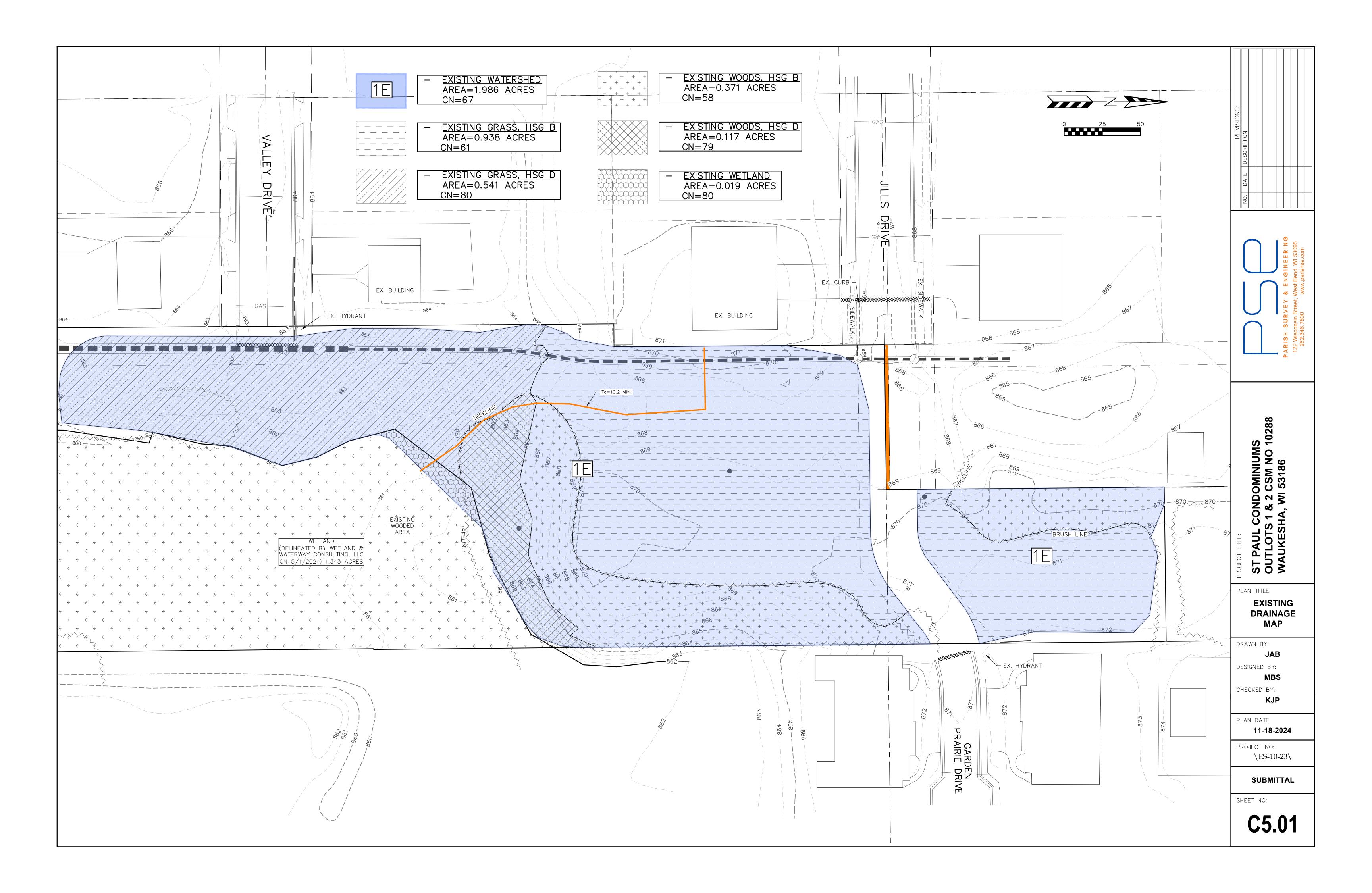
		PARTI	CLE SIZE±			
Boulders	: 8 inches	Coarse Sand:	2 to 4 mm		Silt:	0.005 to 0.074 mm
Cobbles:	3 to 8 inches	Medium Sand:			Clay:	-0.005 mm
Gravel:	5 mm to 3 inches	Fine Sand:	0.074 to 0.42	mm		
RILIN	G & SAMPLING SYM	BOLS				
(ILLEII)		2010				
SS:	Split-spoon, 2" O.D. by 1	3/8" I.D.				
ST:	Shelby Tube, 2" O.D. or 3		in text	RB:	Rolle	er Bit
AU:	Auger Sample			WS:	Was	h Sample
DB:	Diamond Bit			BS:	Bag	Sample
CB:	Carbide Bit			HA:	Han	d Auger
	OPERTY SYMBOLS					
JIL FR	OFERT STREETES					
N: S	tandard penetration count	indicating num	per of blows of	a 14) lb. ham	mer with a 30 inch dro
	equired to advance a split-s			u		
	inconfined compressive str					
	alibrated hand penetromet		, , , ,			
	loisture content, %					
LL: Li	iquid Limit	PL: P	lastic Limit			PI: Plasticity Index
Dd: D	ry Density, pounds per cub	pic foot (pcf)				
	hotoionization Detector (Hr	nu meter) volatila	vanor level nn	m		

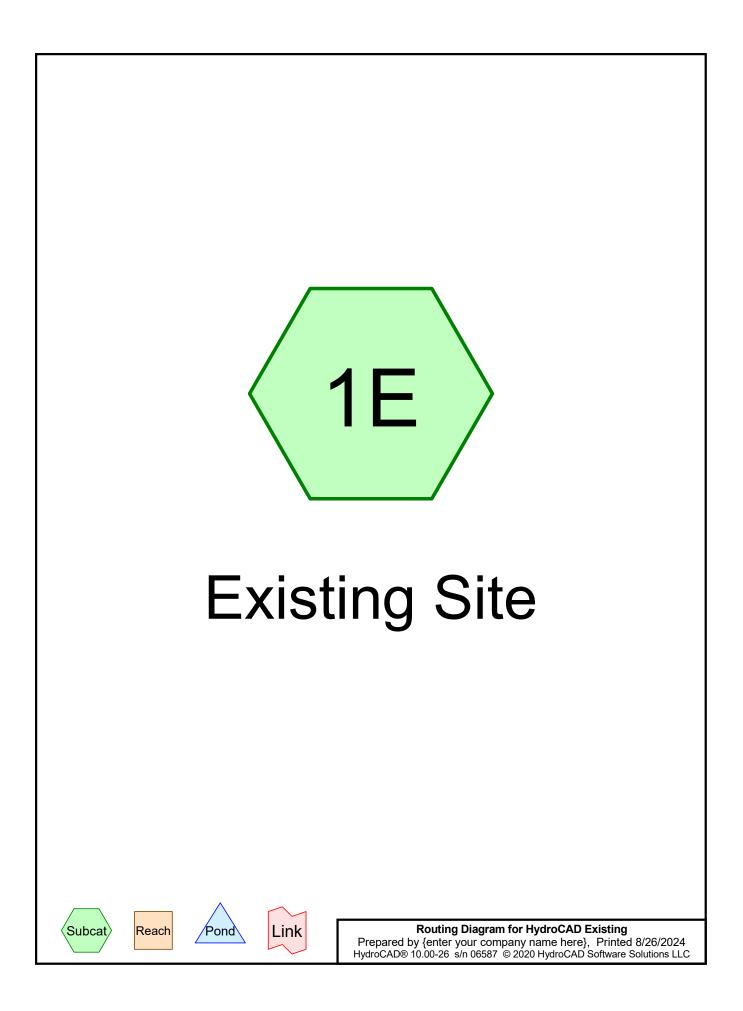
PID: Photoionization Detector (Hnu meter) volatile vapor level, ppm

SOIL RELATIVE DENSITY AND CONSISTENCY CLASSIFICATION

NON-COF	IESIVE SOILS		COHESIVE SOILS					
Classifier	N-Value Range	Classifier	Qu Range (tsf)	N-Value Range				
very loose loose medium dense dense very dense	0-3 3-7 7-15 15-38 38+	very soft soft medium stiff stiff very stiff hard	0-0.25 0.25-0.5 0.5-1.0 1.0-2.0 2.0-4.0 4.0+	0-2 2-5 5-10 10-14 14-32 32+				

GROUNDWATER


Approximate Groundwater level at time noted on soil boring log, measured in open borehole unless otherwise noted. Groundwater levels often vary with time, and are affected by soil permeability characteristics, weather conditions, & lateral drainage conditions.


Appendix C Existing Site Conditions

PARISH SURVEY & ENGINEERING

122 Wisconsin Street | West Bend, WI 53095 www.parishse.com

Project Notes

Rainfall events imported from "NRCS-Rain.txt" for 9179 WI Milwaukee

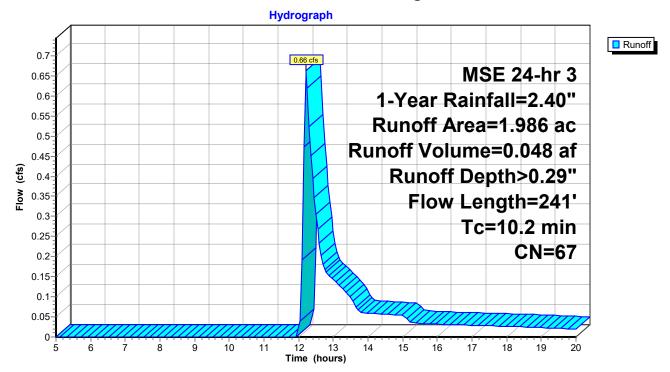
Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.938	61	>75% Grass cover, Good, HSG B (1E)
0.541	80	>75% Grass cover, Good, HSG D (1E)
0.019	80	Wetland (1E)
0.371	58	Woods/grass comb., Good, HSG B (1E)
0.117	79	Woods/grass comb., Good, HSG D (1E)
1.986	67	TOTAL AREA

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1E: Existing SiteRunoff Area=1.986 ac 0.00% Impervious Runoff Depth>0.29"Flow Length=241'Tc=10.2 min CN=67 Runoff=0.66 cfs 0.048 af

Total Runoff Area = 1.986 ac Runoff Volume = 0.048 af Average Runoff Depth = 0.29" 100.00% Pervious = 1.986 ac 0.00% Impervious = 0.000 ac


Summary for Subcatchment 1E: Existing Site

Runoff = 0.66 cfs @ 12.22 hrs, Volume= 0.048 af, Depth> 0.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-Year Rainfall=2.40"

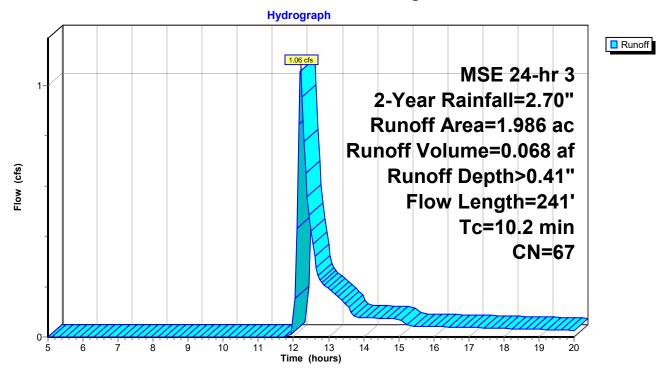
_	Area	(ac)	CN	Desc	cription						
	0.938 61				>75% Grass cover, Good, HSG B						
*	0.019 80			Wetl	Wetland						
	0.	0.371 58		Woo	Woods/grass comb., Good, HSG B						
	0.541 80		>75%	>75% Grass cover, Good, HSG D							
	0.	117	79	Woo	Woods/grass comb., Good, HSG D						
	1.986 67			Weig	Weighted Average						
	1.986			100.	00% Pervi	ous Area					
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	8.2	10	0 0.	.0400	0.20		Sheet Flow,				
	2.0	14	1 0.	.0530	1.15		Grass: Short n= 0.150 P2= 2.64" Shallow Concentrated Flow, Woodland Kv= 5.0 fps				
	10.2	24	1 To	otal							

Subcatchment 1E: Existing Site

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1E: Existing SiteRunoff Area=1.986 ac0.00% ImperviousRunoff Depth>0.41"Flow Length=241'Tc=10.2 minCN=67Runoff=1.06 cfs0.068 af

Total Runoff Area = 1.986 ac Runoff Volume = 0.068 af Average Runoff Depth = 0.41" 100.00% Pervious = 1.986 ac 0.00% Impervious = 0.000 ac


Summary for Subcatchment 1E: Existing Site

Runoff = 1.06 cfs @ 12.21 hrs, Volume= 0.068 af, Depth> 0.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.70"

_	Area	(ac)	CN	Description						
	0.938 61				>75% Grass cover, Good, HSG B					
*	0.019 80			Wetland						
	0.	0.371 58		Woods/grass comb., Good, HSG B						
	0.541 80		>75% Grass cover, Good, HSG D							
_	0.	117	79	Woo	Woods/grass comb., Good, HSG D					
	1.986 67			Weighted Average						
	1.986			100.0	00% Pervi	ous Area				
	Tc (min)	Lengt (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
_	8.2	10) O.O	0400	0.20		Sheet Flow,			
_	2.0	14	1 0.(0530	1.15		Grass: Short n= 0.150 P2= 2.64" Shallow Concentrated Flow, Woodland Kv= 5.0 fps			
	10.2	24	1 To	otal						

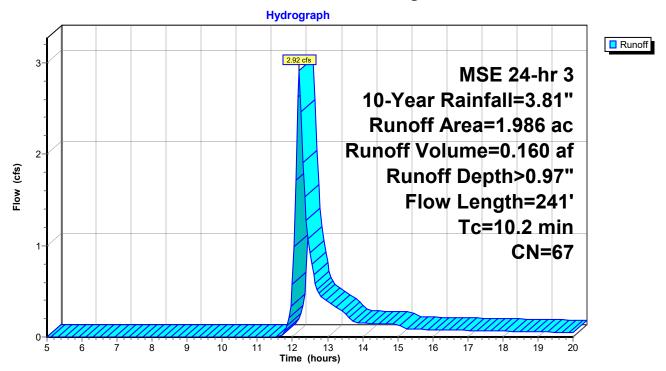
Subcatchment 1E: Existing Site

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1E: Existing Site Runoff Area=1.986 ac 0.00% Impervious Runoff Depth>0.97"

Flow Length=241' Tc=10.2 min CN=67 Runoff=2.92 cfs 0.160 af

Total Runoff Area = 1.986 ac Runoff Volume = 0.160 af Average Runoff Depth = 0.97" 100.00% Pervious = 1.986 ac 0.00% Impervious = 0.000 ac


Summary for Subcatchment 1E: Existing Site

Runoff = 2.92 cfs @ 12.19 hrs, Volume= 0.160 af, Depth> 0.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=3.81"

_	Area	(ac)	CN	Description						
	0.938 61				>75% Grass cover, Good, HSG B					
*	0.019 80			Wetland						
	0.	0.371 58		Woods/grass comb., Good, HSG B						
	0.541 80		>75% Grass cover, Good, HSG D							
_	0.	117	79	Woo	Woods/grass comb., Good, HSG D					
	1.986 67			Weighted Average						
	1.986			100.0	00% Pervi	ous Area				
	Tc (min)	Lengt (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
_	8.2	10) O.O	0400	0.20		Sheet Flow,			
_	2.0	14	1 0.(0530	1.15		Grass: Short n= 0.150 P2= 2.64" Shallow Concentrated Flow, Woodland Kv= 5.0 fps			
	10.2	24	1 To	otal						

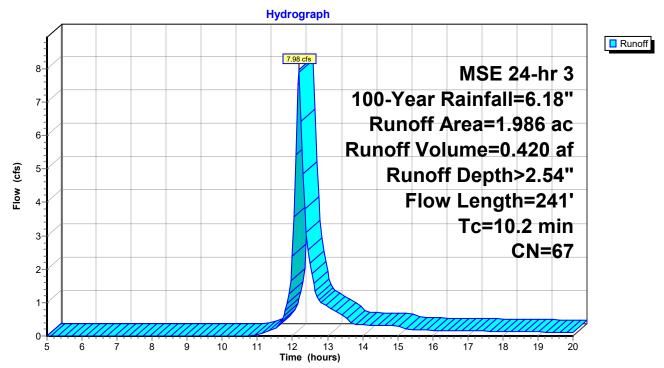
Subcatchment 1E: Existing Site

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1E: Existing SiteRunoff Area=1.986 ac0.00% ImperviousRunoff Depth>2.54"Flow Length=241'Tc=10.2 minCN=67Runoff=7.98 cfs0.420 af

Total Runoff Area = 1.986 ac Runoff Volume = 0.420 af Average Runoff Depth = 2.54" 100.00% Pervious = 1.986 ac 0.00% Impervious = 0.000 ac

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 06587 © 2020 HydroCAD Software Solutions LLC

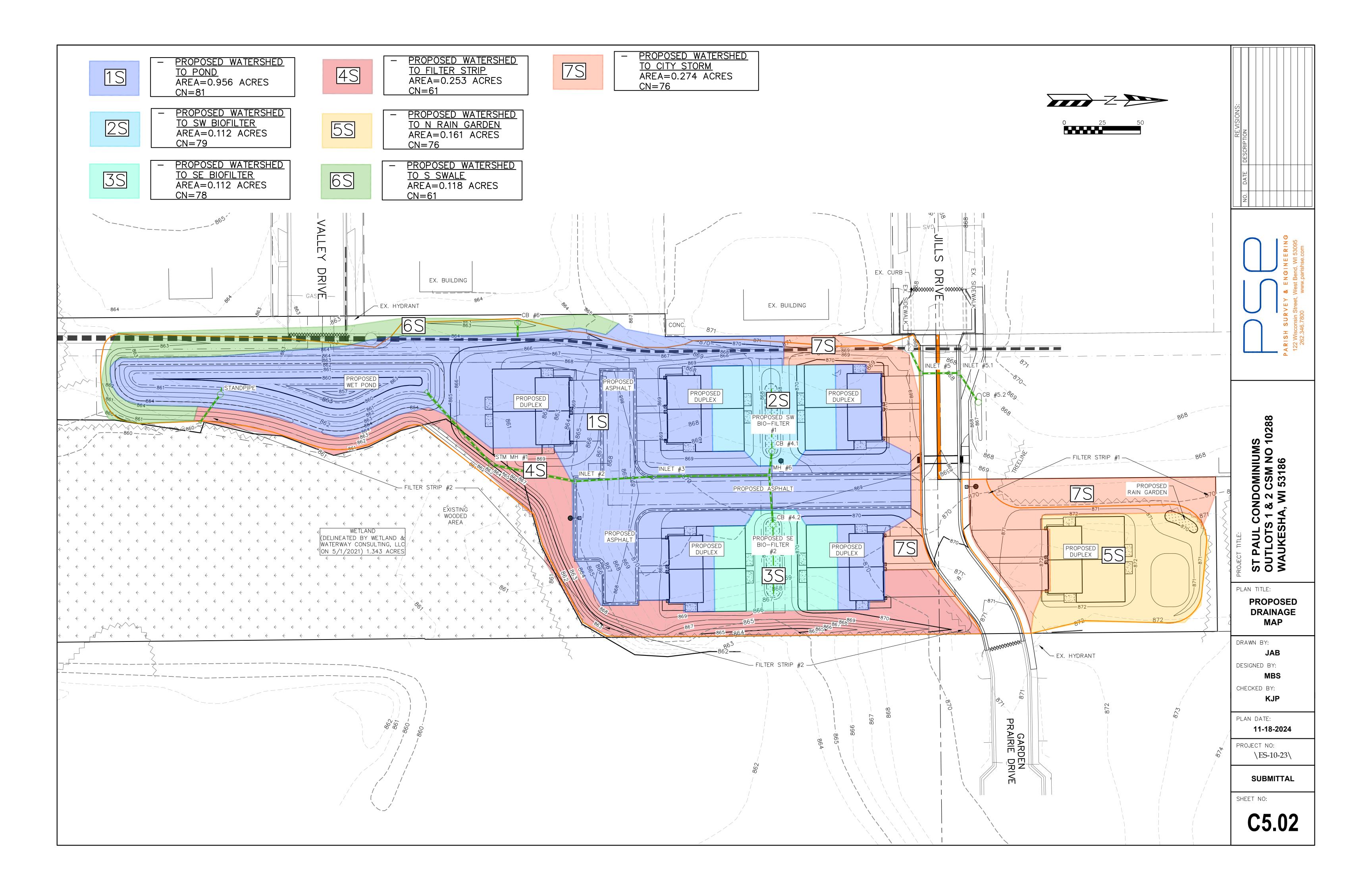

Summary for Subcatchment 1E: Existing Site

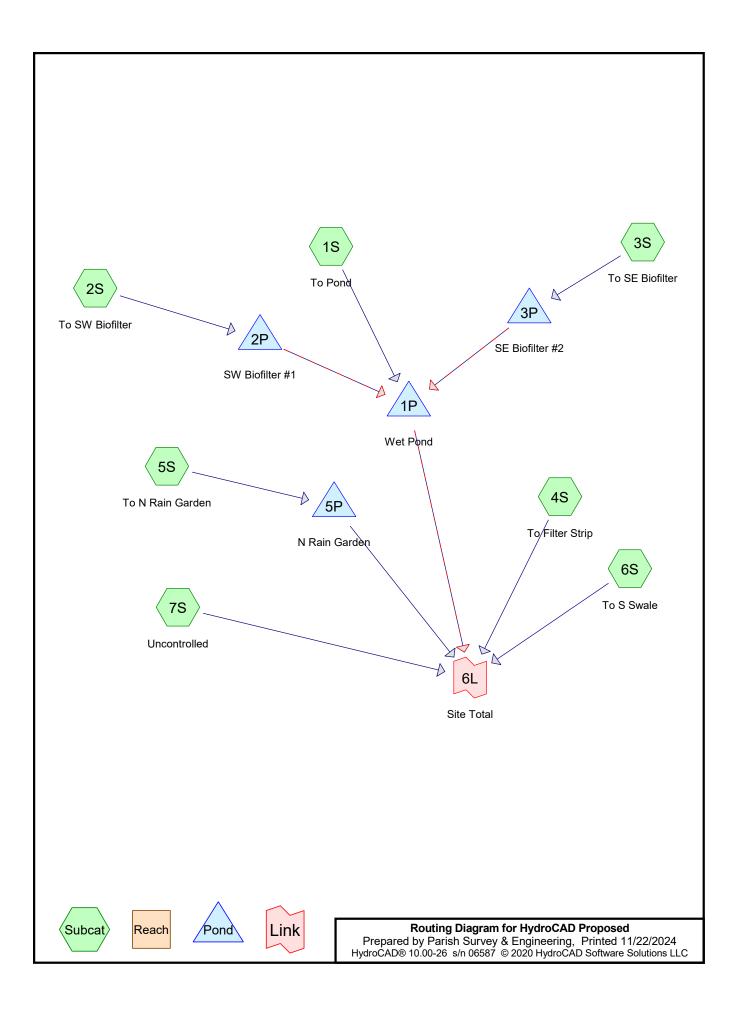
Runoff = 7.98 cfs @ 12.19 hrs, Volume= 0.420 af, Depth> 2.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=6.18"

_	Area	(ac)	CN	Desc	cription					
	0.	938	61	>75%	6 Grass co	over, Good	, HSG B			
*	0.	019	80	Wetl	and	-				
	0.	371	58	Woo	ds/grass o	omb., Goo	d, HSG B			
	0.	541	80	>75%	>75% Grass cover, Good, HSG D					
	0.	117	79	Woo	Woods/grass comb., Good, HSG D					
_	1.986 67			Weid	Weighted Average					
	1.	986			, 00% Pervi	0				
	Тс	Lengt	h :	Slope	Velocity	Capacity	Description			
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	·			
_	8.2	10	0 0	.0400	0.20		Sheet Flow,			
							Grass: Short n= 0.150 P2= 2.64"			
	2.0	14	1 0	.0530	1.15		Shallow Concentrated Flow,			
	-		-		-		Woodland Kv= 5.0 fps			
_	10.2	24	1 T	otal			·			

Subcatchment 1E: Existing Site




Appendix D Proposed Site Conditions

PARISH SURVEY & ENGINEERING

122 Wisconsin Street | West Bend, WI 53095 www.parishse.com

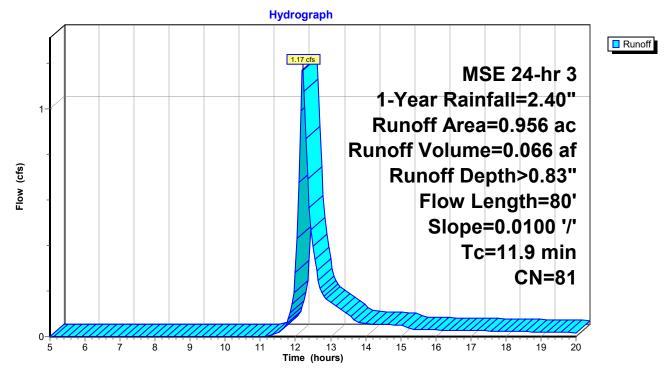
Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.047	61	>75% Grass cover, Good, HSG B (1S, 2S, 3S, 4S, 5S, 6S, 7S)
0.376	98	Buildings (1S, 2S, 3S, 5S)
0.131	98	Driveways (1S, 7S)
0.097	61	Grass B (7S)
0.212	98	Pavement (1S, 7S)
0.021	98	Sidewalks (1S, 4S, 5S, 7S)
0.048	98	Wet Pond (1S)
0.054	73	Woods/grass comb., Poor, HSG B (7S)
1.986	76	TOTAL AREA

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: To Pond Flow Length=80'	Runoff Area=0.956 ac 54.81% Impervious Runoff Depth>0.83" Slope=0.0100 '/' Tc=11.9 min CN=81 Runoff=1.17 cfs 0.066 af
Subcatchment 2S: To SW Biofilter	Runoff Area=0.112 ac 47.32% Impervious Runoff Depth>0.73" Tc=6.0 min CN=79 Runoff=0.15 cfs 0.007 af
Subcatchment 3S: To SE Biofilter	Runoff Area=0.112 ac 46.43% Impervious Runoff Depth>0.68" Tc=6.0 min CN=78 Runoff=0.14 cfs 0.006 af
Subcatchment 4S: To Filter Strip	Runoff Area=0.253 ac 1.19% Impervious Runoff Depth>0.15" Tc=6.0 min CN=61 Runoff=0.03 cfs 0.003 af
Subcatchment 5S: To N Rain Garden Flow Length=100'	Runoff Area=0.161 ac 40.99% Impervious Runoff Depth>0.60" Slope=0.0100 '/' Tc=14.2 min CN=76 Runoff=0.12 cfs 0.008 af
Subcatchment 6S: To S Swale	Runoff Area=0.118 ac 0.00% Impervious Runoff Depth>0.15" Tc=6.0 min CN=61 Runoff=0.01 cfs 0.001 af
Subcatchment 7S: Uncontrolled	Runoff Area=0.274 ac 32.85% Impervious Runoff Depth>0.60" Tc=6.0 min CN=76 Runoff=0.30 cfs 0.014 af
Pond 1P: Wet Pond Primary=0.05 cfs	Peak Elev=861.15' Storage=2,246 cf Inflow=1.29 cfs 0.074 af 0.028 af Secondary=0.00 cfs 0.000 af Outflow=0.05 cfs 0.028 af
Pond 2P: SW Biofilter #1 Primary=0.12 cfs	Peak Elev=865.19' Storage=83 cf Inflow=0.15 cfs 0.007 af 0.005 af Secondary=0.00 cfs 0.000 af Outflow=0.12 cfs 0.005 af
Pond 3P: SE Biofilter #2 Primary=0.02 cfs	Peak Elev=865.07' Storage=153 cf Inflow=0.14 cfs 0.006 af 0.003 af Secondary=0.00 cfs 0.000 af Outflow=0.02 cfs 0.003 af
Pond 5P: N Rain Garden	Peak Elev=870.76' Storage=219 cf Inflow=0.12 cfs 0.008 af Outflow=0.02 cfs 0.003 af
Link 6L: Site Total	Inflow=0.35 cfs 0.050 af Primary=0.35 cfs 0.050 af
Total Runoff Area = 1 986	ac Runoff Volume = 0.105 af Average Runoff Depth = 0.64 "

Total Runoff Area = 1.986 ac Runoff Volume = 0.105 af Average Runoff Depth = 0.64" 60.32% Pervious = 1.198 ac 39.68% Impervious = 0.788 ac

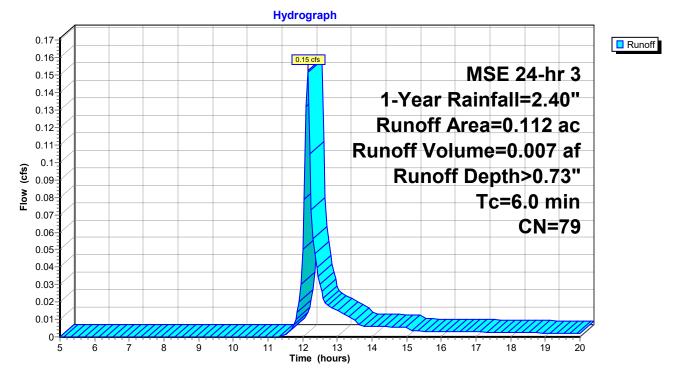

Summary for Subcatchment 1S: To Pond

Runoff = 1.17 cfs @ 12.21 hrs, Volume= 0.066 af, Depth> 0.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-Year Rainfall=2.40"

	Area	(ac)	CΝ	Des	cription					
*	0.	208	98	3 Build	dings					
*	0.	207	98	B Pave	ement					
*	0.	050	98	B Driv	eways					
*	0.	011	98	3 Side	walks					
	0.	432	61	1 >759	% Grass co	over, Good	, HSG B			
*	0.	048	98	3 Wet	Pond					
	0.	956	8′	1 Wei	ghted Aver	age				
	0.	432		45.1	9% Pervio	us Area				
	0.	524		54.8	1% Imperv	ious Area/				
	Tc	Leng	th	Slope	Velocity	Capacity	Description			
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	-			
	11.9	5	30	0.0100	0.11		Sheet Flow,			
							Grass: Short	n= 0.150	P2= 2.64"	

Subcatchment 1S: To Pond

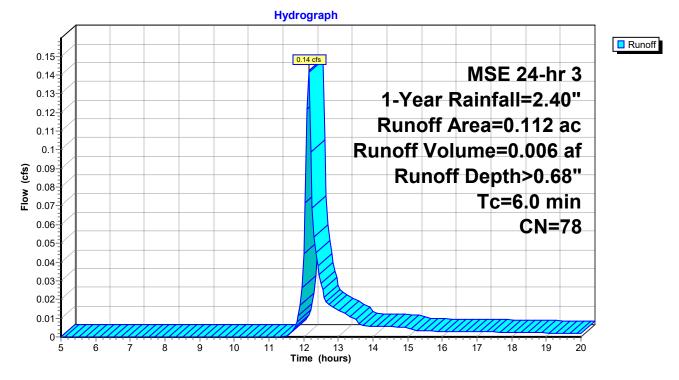

Summary for Subcatchment 2S: To SW Biofilter

Runoff = 0.15 cfs @ 12.14 hrs, Volume= 0.007 af, Depth> 0.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-Year Rainfall=2.40"

	Area (a	ac)	CN	Desc	cription		
*	0.0)53	98	Build	lings		
	0.0)59	61	>75%	% Grass co	over, Good	, HSG B
	0.1	12	79	Weig	ghted Aver	age	
	0.0)59		52.6	8% Pervio	us Area	
	0.0)53		47.3	2% Imperv	ious Area/	
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0						Direct Entry,

Subcatchment 2S: To SW Biofilter

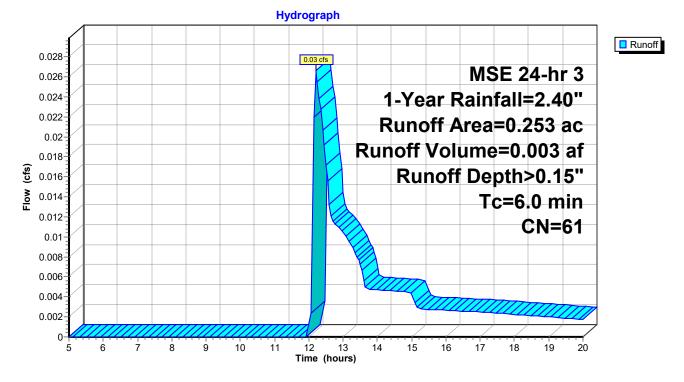

Summary for Subcatchment 3S: To SE Biofilter

Runoff = 0.14 cfs @ 12.14 hrs, Volume= 0.006 af, Depth> 0.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-Year Rainfall=2.40"

	Area	(ac)	CN	Desc	cription		
*	0.	052	98	Build	lings		
	0.	060	61	>759	% Grass co	over, Good,	, HSG B
	0.	112	78	Weig	ghted Aver	age	
	0.060 53.57% Pervious Area						
	0.052 46.43%			3% Imperv	vious Area		
	Тс	Long	th	Slope	Velocity	Capacity	Description
	(min)	Leng (fee		(ft/ft)	(ft/sec)	Capacity (cfs)	Description
		(100		(1011)	(10/300)	(013)	
	6.0						Direct Entry,

Subcatchment 3S: To SE Biofilter

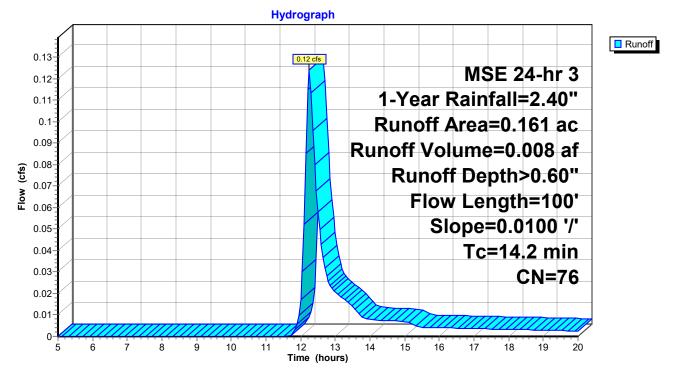

Summary for Subcatchment 4S: To Filter Strip

Runoff = 0.03 cfs @ 12.22 hrs, Volume= 0.003 af, Depth> 0.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-Year Rainfall=2.40"

	Area	(ac)	CN	Desc	cription		
	0.	250	61	>75%	% Grass c	over, Good	, HSG B
*	0.	003	98	Side	walks		
	0.	253	61	Weig	ghted Avei	rage	
	0.	250		98.8	1% Pervio	us Area	
	0.003 1.19% Impervious Area					ous Area	
	-			<u>.</u>		o	
	Tc	Leng		Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry,

Subcatchment 4S: To Filter Strip


Summary for Subcatchment 5S: To N Rain Garden

Runoff = 0.12 cfs @ 12.25 hrs, Volume= 0.008 af, Depth> 0.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-Year Rainfall=2.40"

	Area	(ac)	CN	Desc	cription					
*	0.	063	98	Build	lings					
*	0.	003	98	Side	walks					
	0.	095	61	>75%	% Grass co	over, Good	, HSG B			
	0.	161	76	Weig	ghted Aver	age				
	0.	095		59.0	1% Pervio	us Area				
	0.	066		40.9	9% Imperv	vious Area				
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	14.2	10	0 0	0.0100	0.12		Sheet Flow,			
							Grass: Short	n= 0.150	P2= 2.64"	

Subcatchment 5S: To N Rain Garden

0.004 0.003 0.002 0.001

5

Ż

6

8

ģ

11

12

Time (hours)

13

14

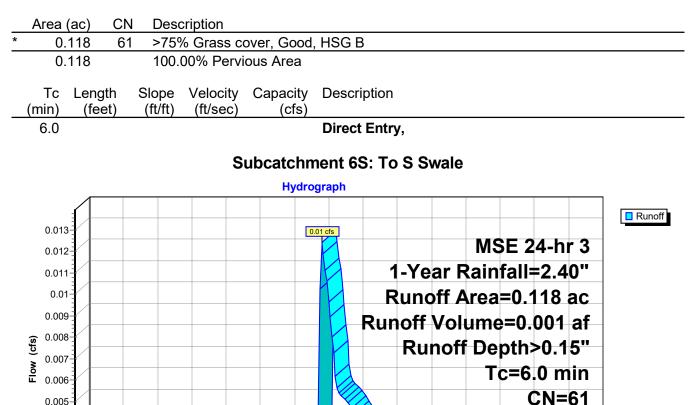
15

16

17

18

19


20

10

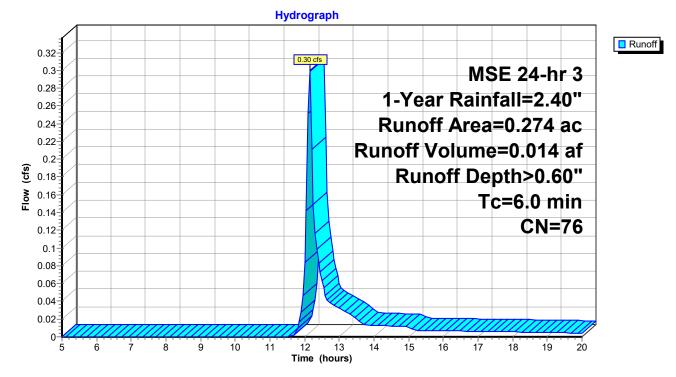
Summary for Subcatchment 6S: To S Swale

Runoff = 0.01 cfs @ 12.22 hrs, Volume= 0.001 af, Depth> 0.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-Year Rainfall=2.40"

Summary for Subcatchment 7S: Uncontrolled

Runoff = 0.30 cfs @ 12.14 hrs, Volume= 0.014 af, Depth> 0.60"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-Year Rainfall=2.40"

	Area (a	ac) (CN	Desc	ription							
*	0.0	05	98	Pave	Pavement							
*	0.0	81	98	Drive	Driveways							
*	0.0	04	98	Side	Sidewalks							
	0.0	33	61	>75%	6 Grass co	over, Good	d, HSG B					
*	0.0	97	61	Gras	s B							
	0.0	54	73	Woo	ds/grass o	comb., Pool	or, HSG B					
	0.2	74	76	Weig	phted Aver	age						
	0.1	84		67.15% Pervious Area								
	0.0	90		32.85% Impervious Area								
	– .		~			.						
	Tc l	Length		lope	Velocity	Capacity	Description					
	(min)	(feet)	((ft/ft)	(ft/sec)	(cfs)						
	~ ~											

6.0

Direct Entry,

Subcatchment 7S: Uncontrolled

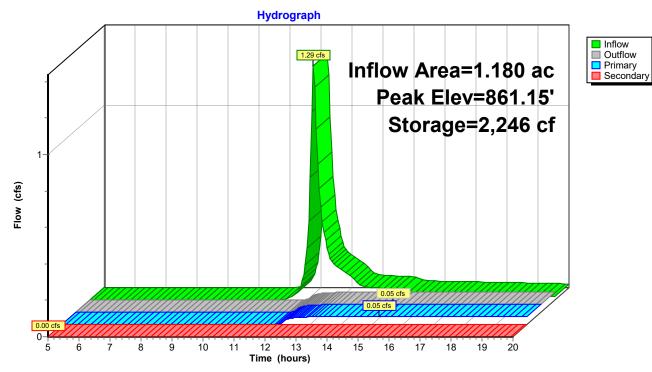
Summary for Pond 1P: Wet Pond

Inflow Area =	1.180 ac, 53.31% Impervious, Inflow De	epth > 0.75" for 1-Year event
Inflow =	1.29 cfs @ 12.21 hrs, Volume=	0.074 af
Outflow =	0.05 cfs @ 15.21 hrs, Volume=	0.028 af, Atten= 96%, Lag= 180.3 min
Primary =	0.05 cfs @ 15.21 hrs, Volume=	0.028 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 861.15' @ 15.21 hrs Surf.Area= 3,877 sf Storage= 2,246 cf

Plug-Flow detention time= 238.7 min calculated for 0.028 af (38% of inflow) Center-of-Mass det. time= 160.0 min (967.7 - 807.7)

Volume	Invert	Avail.Stor	rage Storage	Description	
#1	860.50'	18,81	13 cf Custom	Stage Data (Pris	smatic) Listed below (Recalc)
Elevatio		uf Aug a	Inc. Ctore	Curra Starra	
Elevatio		rf.Area	Inc.Store	Cum.Store	
(fee	/	(sq-ft)	(cubic-feet)	(cubic-feet)	
860.5		3,050	0	0	
861.0	0	3,680	1,683	1,683	
862.0	0	5,000	4,340	6,023	
863.0	0	6,400	5,700	11,723	
864.0	0	7,780	7,090	18,813	
			,	,	
Device	Routing	Invert	Outlet Device	s	
#1	Primary	860.11'	12.0" Round	Culvert	
			L= 22.0' CM	P, projecting, no	headwall, Ke= 0.900
					360.00' S= 0.0050 '/' Cc= 0.900
					r, Flow Area= 0.79 sf
#2	Device 1	862.50'		Drifice/Grate C	•
<i>π</i> ∠	Device 1	002.00		ir flow at low head	
#3	Device 1	860.50'		fice/Grate C= 0	
#4	Secondary	863.00'			bad-Crested Rectangular Weir
					0.80 1.00 1.20 1.40 1.60
			Coef. (English	n) 2.49 2.56 2.7	0 2.69 2.68 2.69 2.67 2.64
Drimer	OutFlow M		2 15 01 bra 11		
Primary		ax=0.05 CIS ((ມ ID.ZINTS HN	N=861.15' (Free	a Discharge)


Primary OutFlow Max=0.05 cfs @ 15.21 hrs HW=861.15' (Free Discharge)

1=Culvert (Passes 0.05 cfs of 2.12 cfs potential flow)

2=Orifice/Grate (Controls 0.00 cfs)

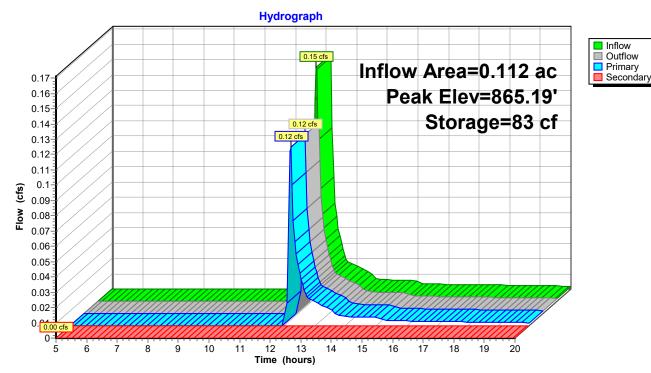
-3=Orifice/Grate (Orifice Controls 0.05 cfs @ 3.69 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=860.50' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 1P: Wet Pond

Summary for Pond 2P: SW Biofilter #1

Inflow Area =	0.112 ac, 47.32% Impervious, Inflow De	epth > 0.73" for 1-Year event
Inflow =	0.15 cfs @ 12.14 hrs, Volume=	0.007 af
Outflow =	0.12 cfs @ 12.21 hrs, Volume=	0.005 af, Atten= 24%, Lag= 4.4 min
Primary =	0.12 cfs @ 12.21 hrs, Volume=	0.005 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 865.19' @ 12.21 hrs Surf.Area= 365 sf Storage= 83 cf

Plug-Flow detention time= 79.2 min calculated for 0.005 af (79% of inflow) Center-of-Mass det. time= 26.2 min (828.0 - 801.8)

Volume	Invert	Avail.Stor	rage S	Storage	Description	
#1	864.50'	12			Stage Data (Pr overall x 33.0%	ismatic) Listed below (Recalc)
#2	865.50'	19	97 cf C	Custom	Stage Data (Pr	ismatic) Listed below (Recalc)
#3	867.50'	48			verall x 27.0% Stage Data (Pr	Volds ismatic) Listed below (Recalc)
		80)3 cf T	otal Av	ailable Storage	
Elevatio		f.Area	Inc.S		Cum.Store	
(fee	/	(sq-ft)	(cubic-f		(cubic-feet)	
864.5		365		0	0	
865.5	0	365		365	365	
Elevatio	n Sur	f.Area	Inc.S	tore	Cum.Store	
(fee	t)	(sq-ft)	(cubic-f	feet)	(cubic-feet)	
865.5	0	365		0	0	
867.5	0	365		730	730	
Elevatio	n Sur	f.Area	Inc.S	tore	Cum.Store	
(fee	t)	(sq-ft)	(cubic-f	feet)	(cubic-feet)	
867.5	-	350		0	0	
868.0	0	1,590		485	485	
Device	Routing	Invert	Outlet	Device	s	
#1	Primary	865.00'	12.0"	Round	Culvert	
						headwall, Ke= 0.900
						864.68' S= 0.0200 '/' Cc= 0.900
						or, Flow Area= 0.79 sf
#2	Device 1	865.00'			000" Diameter,	
					be, Hazen-Willi Elev. = 865.00' /	
#3	Device 1	868.00'				0.600 Limited to weir flow at low heads
#3 #4	Secondary	867.85'				bad-Crested Rectangular Weir
11-1	Coornaary	007.00				0.80 1.00 1.20 1.40 1.60 1.80 2.00
					50 4.00 4.50 5	
						70 2.68 2.68 2.66 2.65 2.65 2.65
					56 2.68 2.70 2	

Primary OutFlow Max=0.11 cfs @ 12.21 hrs HW=865.18' (Free Discharge) 1=Culvert (Passes 0.11 cfs of 0.11 cfs potential flow) 2=Drain Tile (Tube Controls 0.11 cfs @ 0.56 fps) 3=Standpipe (Controls 0.00 cfs)

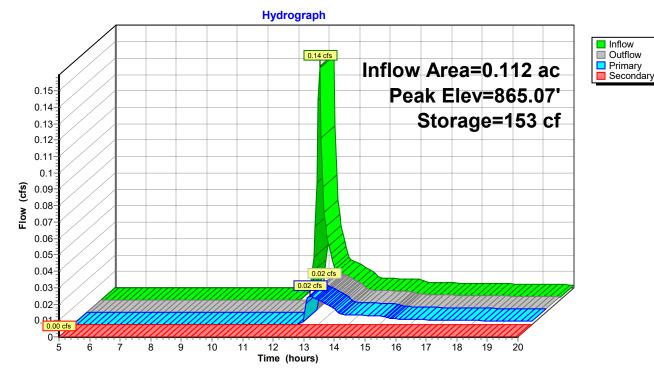
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=864.50' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 2P: SW Biofilter #1

Summary for Pond 3P: SE Biofilter #2

Inflow Area =	0.112 ac, 46.43% Impervious, Inflow De	epth > 0.68" for 1-Year event
Inflow =	0.14 cfs @ 12.14 hrs, Volume=	0.006 af
Outflow =	0.02 cfs @ 12.74 hrs, Volume=	0.003 af, Atten= 88%, Lag= 35.9 min
Primary =	0.02 cfs @ 12.74 hrs, Volume=	0.003 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 865.07' @ 12.74 hrs Surf.Area= 880 sf Storage= 153 cf


Plug-Flow detention time= 165.0 min calculated for 0.003 af (47% of inflow) Center-of-Mass det. time= 89.2 min (893.2 - 804.0)

Volume	Invert	Avail.Stor	age Stora	ge Description	
#1	864.00'	14		om Stage Data (Prismatic) Listed below (Re	ecalc)
#2	865.00'	23	8 cf Cust	f Overall x 33.0% Voids om Stage Data (Prismatic) Listed below (Re f Overall x 27.0% Voids	ecalc)
#3	867.00'	98		om Stage Data (Prismatic) Listed below (Re	ecalc)
		1,36	8 cf Tota	Available Storage	
Elevatio	n Sur	f.Area	Inc.Store	Cum.Store	
(feet	.)	(sq-ft)	(cubic-feet)	(cubic-feet)	
864.00		440	C	-	
865.00	0	440	440	440	
Elevatio	n Sur	f.Area	Inc.Store	Cum.Store	
(feet	/	(sq-ft)	(cubic-feet)	(cubic-feet)	
865.00		440	C	-	
867.00	0	440	880	880	
Elevatio	n Sur	f.Area	Inc.Store	Cum.Store	
(feet	/	(sq-ft)	(cubic-feet)	(cubic-feet)	
867.00		440	C	-	
868.00	0	1,530	985	985	
Device	Routing	Invert	Outlet Dev	ices	
#1	Primary	865.00'	12.0" Rou	nd Culvert	
				CPP, projecting, no headwall, Ke= 0.900	
				et Invert= 865.00' / 864.68' S= 0.0097 '/' (
#2	Device 1	865.00'		Corrugated PP, smooth interior, Flow Area= 6.000" Diameter, C= 0.600	= 0.79 st
#2	Device	805.00		Tube, Hazen-Williams C= 130	
				et Elev. = 865.00' / 865.00'	
#3	Device 1	868.00'		z. Orifice/Grate C= 0.600	
				weir flow at low heads	
#4	Secondary	867.85'		x 5.0' breadth Broad-Crested Rectangula	
) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.	60 1.80 2.00
				3.50 4.00 4.50 5.00 5.50 lish) 2.34 2.50 2.70 2.68 2.68 2.66 2.65	265 265
				1311 2.04 2.00 2.10 2.00 2.00 2.00 2.00 2.00 2.00	2.00 2.00

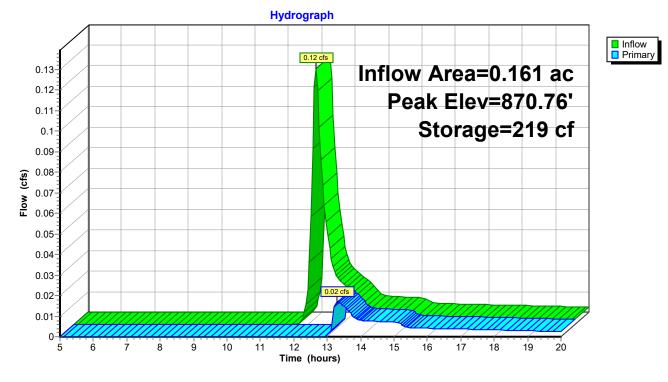
2.65 2.67 2.66 2.68 2.70 2.74 2.79 2.88

Primary OutFlow Max=0.02 cfs @ 12.74 hrs HW=865.07' (Free Discharge) 1=Culvert (Inlet Controls 0.02 cfs @ 0.70 fps) 2=Drain Tile (Passes 0.02 cfs of 0.02 cfs potential flow) 3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=864.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 3P: SE Biofilter #2

Summary for Pond 5P: N Rain Garden

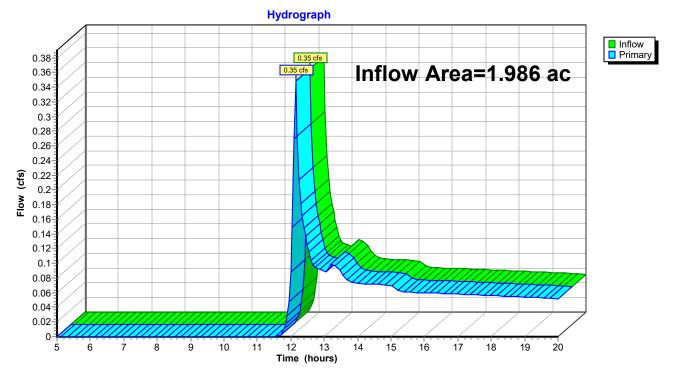

Inflow Area	=	0.161 ac, 40.99% Impervious, Inflow Depth > 0.60" for 1-Year event
Inflow =	=	0.12 cfs @ 12.25 hrs, Volume= 0.008 af
Outflow =	=	0.02 cfs @ 13.31 hrs, Volume= 0.003 af, Atten= 86%, Lag= 63.6 min
Primary :	=	0.02 cfs @ 13.31 hrs, Volume= 0.003 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 870.76' @ 13.31 hrs Surf.Area= 418 sf Storage= 219 cf

Plug-Flow detention time= 198.3 min calculated for 0.003 af (38% of inflow) Center-of-Mass det. time= 117.4 min (932.4 - 815.0)

Volume	Inve	ert Avail.Sto	rage Storage	Description	
#1	870.0	00' 3	30 cf Custom	Stage Data (Prismatic) Listed below (F	Recalc)
Elevation (feet 870.00	:)	Surf.Area (sq-ft) 160	Inc.Store (cubic-feet) 0	Cum.Store (cubic-feet) 0	
870.00	-	500	330	330	
01 110		000			
Device	Routing	Invert	Outlet Device	i	
#1	Primary	870.75'	Head (feet) 0 2.50 3.00 3.8 Coef. (English	D' breadth Broad-Crested Rectangular 20 0.40 0.60 0.80 1.00 1.20 1.40 1 0 4.00 4.50 5.00 5.50) 2.38 2.54 2.69 2.68 2.67 2.67 2.6 3 2.76 2.79 2.88 3.07 3.32	1.60 1.80 2.00

Primary OutFlow Max=0.02 cfs @ 13.31 hrs HW=870.76' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 0.02 cfs @ 0.22 fps)



Pond 5P: N Rain Garden

Summary for Link 6L: Site Total

Inflow Area	a =	1.986 ac, 39.68% Impervious, Inflow Depth > 0.30" for 1-Year even	ıt
Inflow	=	0.35 cfs @ 12.15 hrs, Volume= 0.050 af	
Primary	=	0.35 cfs @ 12.15 hrs, Volume= 0.050 af, Atten= 0%, Lag= 0.0) min

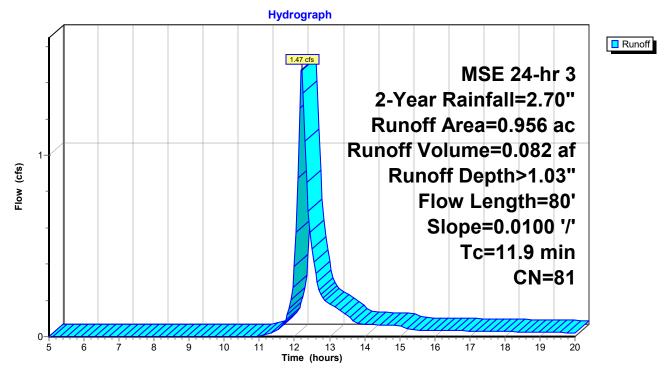
Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 6L: Site Total

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: To Pond Flow Length=80	Runoff Area=0.956 ac 54.81% Impervious Runoff Depth>1.03" Slope=0.0100 '/' Tc=11.9 min CN=81 Runoff=1.47 cfs 0.082 af
Subcatchment 2S: To SW Biofilter	Runoff Area=0.112 ac 47.32% Impervious Runoff Depth>0.92" Tc=6.0 min CN=79 Runoff=0.19 cfs 0.009 af
Subcatchment 3S: To SE Biofilter	Runoff Area=0.112 ac 46.43% Impervious Runoff Depth>0.87" Tc=6.0 min CN=78 Runoff=0.18 cfs 0.008 af
Subcatchment 4S: To Filter Strip	Runoff Area=0.253 ac 1.19% Impervious Runoff Depth>0.24" Tc=6.0 min CN=61 Runoff=0.07 cfs 0.005 af
Subcatchment 5S: To N Rain Garden Flow Length=100	Runoff Area=0.161 ac 40.99% Impervious Runoff Depth>0.77" Slope=0.0100 '/' Tc=14.2 min CN=76 Runoff=0.16 cfs 0.010 af
Subcatchment 6S: To S Swale	Runoff Area=0.118 ac 0.00% Impervious Runoff Depth>0.24" Tc=6.0 min CN=61 Runoff=0.03 cfs 0.002 af
Subcatchment 7S: Uncontrolled	Runoff Area=0.274 ac 32.85% Impervious Runoff Depth>0.77" Tc=6.0 min CN=76 Runoff=0.39 cfs 0.018 af
Pond 1P: Wet Pond Primary=0.05 cfs	Peak Elev=861.32' Storage=2,946 cf Inflow=1.63 cfs 0.094 af 0.033 af Secondary=0.00 cfs 0.000 af Outflow=0.05 cfs 0.033 af
Pond 2P: SW Biofilter #1 Primary=0.17 cfs	Peak Elev=865.24' Storage=89 cf Inflow=0.19 cfs 0.009 af 0.007 af Secondary=0.00 cfs 0.000 af Outflow=0.17 cfs 0.007 af
Pond 3P: SE Biofilter #2 Primary=0.05 cfs	Peak Elev=865.12' Storage=160 cf Inflow=0.18 cfs 0.008 af 0.005 af Secondary=0.00 cfs 0.000 af Outflow=0.05 cfs 0.005 af
Pond 5P: N Rain Garden	Peak Elev=870.77' Storage=223 cf Inflow=0.16 cfs 0.010 af Outflow=0.05 cfs 0.005 af
Link 6L: Site Total	Inflow=0.51 cfs 0.063 af Primary=0.51 cfs 0.063 af
Total Punoff Area = 1.986	$ac_{\text{Runoff Volume}} = 0.134 af_{\text{Average Runoff Denth}} = 0.81"$

Total Runoff Area = 1.986 ac Runoff Volume = 0.134 af Average Runoff Depth = 0.81" 60.32% Pervious = 1.198 ac 39.68% Impervious = 0.788 ac

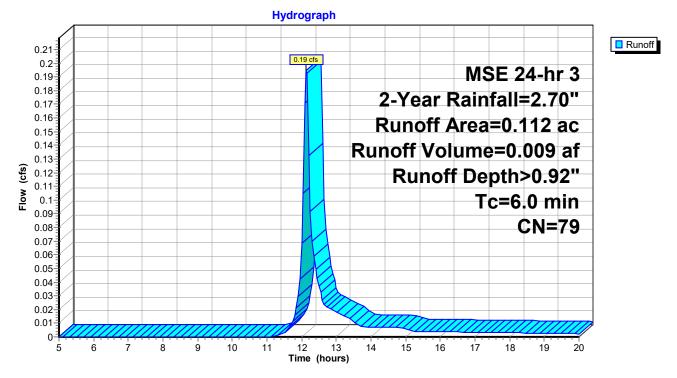

Summary for Subcatchment 1S: To Pond

Runoff = 1.47 cfs @ 12.21 hrs, Volume= 0.082 af, Depth> 1.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.70"

_	Area	(ac)	CN	Desc	cription					
*	0.	208	98	Build	lings					
*	0.	207	98	B Pave	ement					
*	0.	050	98	B Drive	eways					
*	0.	011	98	3 Side	walks					
	0.	432	61	>75%	% Grass c	over, Good	, HSG B			
*	0.	048	98	8 Wet	Pond					
	0.	956	81	Weig	ghted Aver	age				
	0.	432		45.1	9% Pervio	us Area				
	0.	524		54.8	1% Imperv	/ious Area				
	Tc	Leng	th	Slope	Velocity	Capacity	Description			
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)				
	11.9	8	30	0.0100	0.11		Sheet Flow,			
							Grass: Short	n= 0.150	P2= 2.64"	

Subcatchment 1S: To Pond

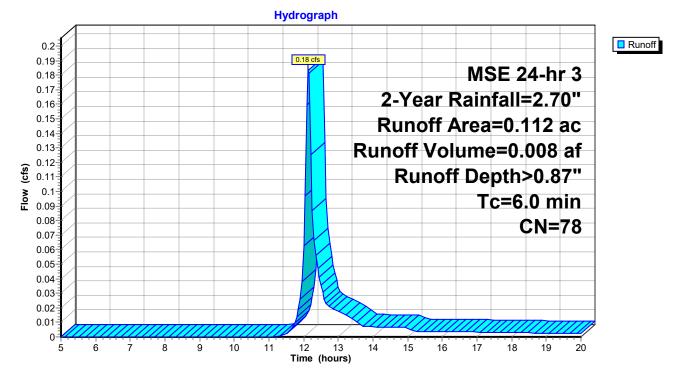

Summary for Subcatchment 2S: To SW Biofilter

Runoff = 0.19 cfs @ 12.14 hrs, Volume= 0.009 af, Depth> 0.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.70"

Area (ac)	CN	Desc	ription		
0.0)53	98	Build	lings		
0.0)59	61	>75%	6 Grass co	over, Good	I, HSG B
0.1	112	79	Weig	phted Aver	age	
0.0)59		52.68	8% Pervio	us Area	
0.0)53		47.3	2% Imperv	vious Area	
Tc (min)			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry,
	0.0 0.0 0.0 0.0 0.0 0.0 (min)	(min) (fee	0.053 98 0.059 61 0.112 79 0.059 0.053 Tc Length \$ (min) (feet)	0.053 98 Build 0.059 61 >759 0.112 79 Weig 0.059 52.66 0.053 47.32 Tc Length Slope (min) (feet) (ft/ft)	0.053 98 Buildings 0.059 61 >75% Grass co 0.112 79 Weighted Aver 0.059 52.68% Pervio 0.053 47.32% Imperv Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec)	0.053 98 Buildings 0.059 61 >75% Grass cover, Good 0.112 79 Weighted Average 0.059 52.68% Pervious Area 0.053 47.32% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)

Subcatchment 2S: To SW Biofilter

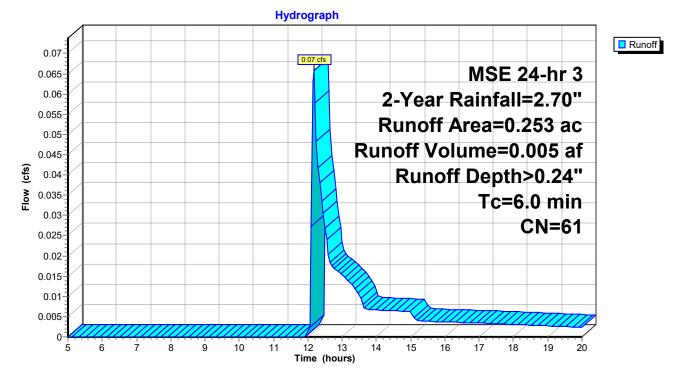

Summary for Subcatchment 3S: To SE Biofilter

Runoff = 0.18 cfs @ 12.14 hrs, Volume= 0.008 af, Depth> 0.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.70"

	Area	(ac)	CN	Desc	cription		
*	0.	052	98	Build	lings		
	0.	060	61	>759	% Grass co	over, Good	, HSG B
	0.	112	78	Weig	ghted Aver	rage	
	0.	060		53.5	7% Pervio	us Area	
	0.	052		46.4	3% Imperv	ious Area/	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0						Direct Entry,

Subcatchment 3S: To SE Biofilter

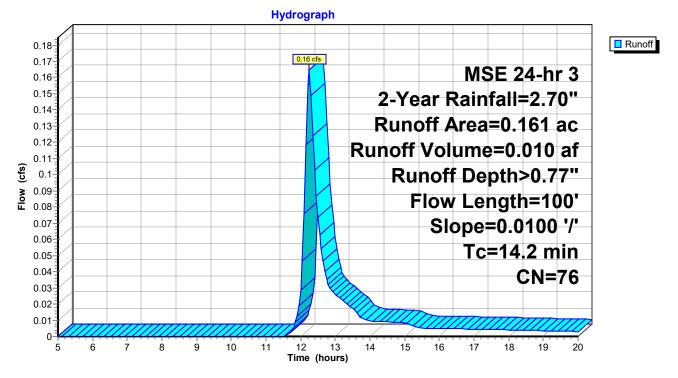

Summary for Subcatchment 4S: To Filter Strip

Runoff = 0.07 cfs @ 12.17 hrs, Volume= 0.005 af, Depth> 0.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.70"

	Area	(ac)	CN	Desc	cription		
	0.	250	61	>75%	% Grass co	over, Good	, HSG B
*	0.	003	98	Side	walks		
	0.	253	61	Weig	ghted Aver	rage	
	0.	250		98.8	1% Pervio	us Area	
	0.	003		1.19	% Impervi	ous Area	
	Tc	Leng	th	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry,
							-

Subcatchment 4S: To Filter Strip


Summary for Subcatchment 5S: To N Rain Garden

Runoff = 0.16 cfs @ 12.24 hrs, Volume= 0.010 af, Depth> 0.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.70"

Area	(ac)	CN	Desc	ription				
0.	063	98	Build	lings				
0.	003	98	Side	walks				
0.	095	61	>75%	6 Grass co	over, Good	, HSG B		
0.	161	76	Weig	hted Aver	age			
0.	095		59.0	1% Pervio	us Area			
0.	066		40.99	9% Imperv	vious Area			
Tc (min)	•		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
14.2	10	0 0	0.0100	0.12		Sheet Flow,	n = 0.150	D2-264"
	0. 0. 0. 0. 0. 0. (min)	(min) (fee	0.063 98 0.003 98 0.095 61 0.161 76 0.095 0.066 Tc Length (min) (feet)	0.063 98 Build 0.003 98 Sider 0.095 61 >759 0.161 76 Weig 0.095 59.0 0.066 40.99 Tc Length Slope (min) (feet) (ft/ft)	0.063 98 Buildings 0.003 98 Sidewalks 0.095 61 >75% Grass co 0.161 76 Weighted Aver 0.095 59.01% Pervio 0.066 40.99% Imperv Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec)	0.063 98 Buildings 0.003 98 Sidewalks 0.095 61 >75% Grass cover, Good 0.161 76 Weighted Average 0.095 59.01% Pervious Area 0.066 40.99% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)	0.063 98 Buildings 0.003 98 Sidewalks 0.095 61 >75% Grass cover, Good, HSG B 0.161 76 Weighted Average 0.095 59.01% Pervious Area 0.066 40.99% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 14.2 100 0.0100 0.12 Sheet Flow,	0.06398Buildings0.00398Sidewalks0.09561>75% Grass cover, Good, HSG B0.16176Weighted Average0.09559.01% Pervious Area0.06640.99% Impervious AreaTcLengthSlopeVelocityCapacityDescription(min)(feet)(ft/ft)

Subcatchment 5S: To N Rain Garden

0.002

5

6

Ż

8

ģ

Summary for Subcatchment 6S: To S Swale

Runoff = 0.03 cfs @ 12.17 hrs, Volume= 0.002 af, Depth> 0.24"

11

12

Time (hours)

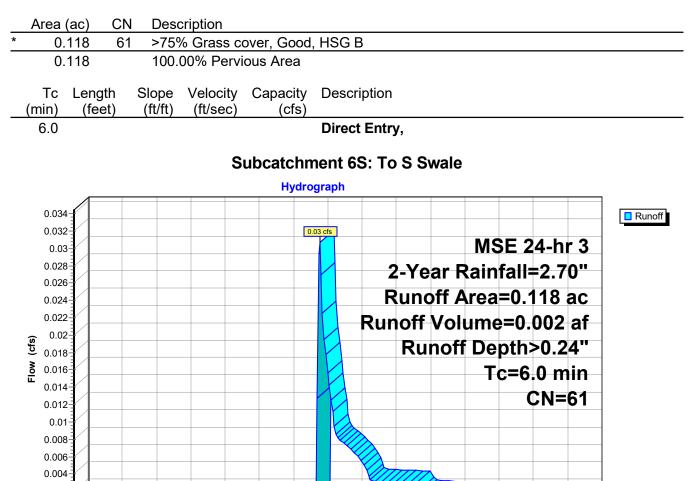
13

14

15

16

17


18

19

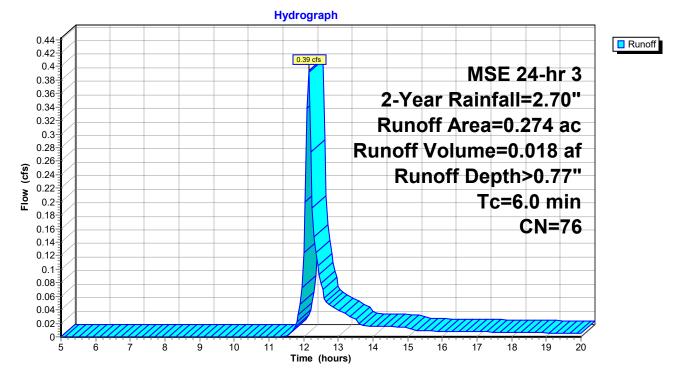
20

10

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.70"

Summary for Subcatchment 7S: Uncontrolled

Runoff = 0.39 cfs @ 12.14 hrs, Volume= 0.018 af, Depth> 0.77"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-Year Rainfall=2.70"

	Area (ac)	CN	Description
*	0.005	98	Pavement
*	0.081	98	Driveways
*	0.004	98	Sidewalks
	0.033	61	>75% Grass cover, Good, HSG B
*	0.097	61	Grass B
_	0.054	73	Woods/grass comb., Poor, HSG B
	0.274	76	Weighted Average
	0.184		67.15% Pervious Area
	0.090		32.85% Impervious Area
	Tc Leng	•	Slope Velocity Capacity Description
	(min) (fee	et)	(ft/ft) (ft/sec) (cfs)

6.0

Direct Entry,

Subcatchment 7S: Uncontrolled

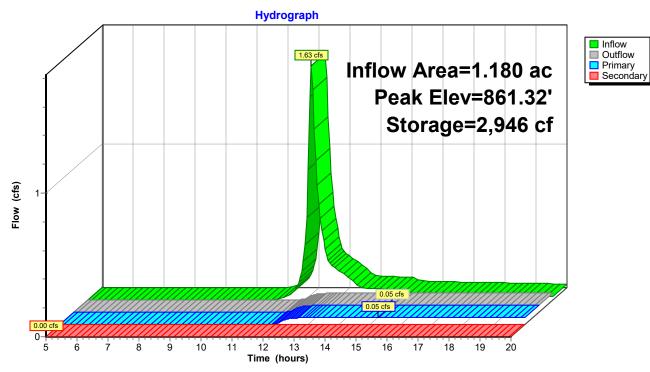
Summary for Pond 1P: Wet Pond

Inflow Area =	1.180 ac, 53.31% Impervious, Inflow De	epth > 0.96" for 2-Year event
Inflow =	1.63 cfs @ 12.20 hrs, Volume=	0.094 af
Outflow =	0.05 cfs @ 15.24 hrs, Volume=	0.033 af, Atten= 97%, Lag= 182.4 min
Primary =	0.05 cfs @ 15.24 hrs, Volume=	0.033 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 861.32' @ 15.24 hrs Surf.Area= 4,108 sf Storage= 2,946 cf

Plug-Flow detention time= 240.8 min calculated for 0.033 af (35% of inflow) Center-of-Mass det. time= 164.1 min (967.0 - 802.9)

Volume	Invert	Avail.Sto	rage Storage	Description			
#1	860.50'	18,81	3 cf Custom	n Stage Data (Pr	ismatic) Listed below (Recalc)		
Elevatio	n Su	rf.Area	Inc.Store	Cum.Store			
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)			
860.5	50	3,050	0	0			
861.0	0	3,680	1,683	1,683			
862.0	0	5,000	4,340	6,023			
863.0		6,400	5,700	11,723			
864.0	0	7,780	7,090	18,813			
Device	Routing	Invert	Outlet Device	es			
#1	Primary	860.11'	12.0" Round	I Culvert			
					headwall, Ke= 0.900		
					860.00' S= 0.0050 '/' Cc= 0.900		
				· ·	or, Flow Area= 0.79 sf		
#2	Device 1	862.50'		Orifice/Grate			
	During			ir flow at low hea			
#3	Device 1	860.50'		ifice/Grate C=			
#4	Secondary	863.00'	•		road-Crested Rectangular Weir		
					0.80 1.00 1.20 1.40 1.60		
			Coet. (Englis	h) 2.49 2.56 2.	70 2.69 2.68 2.69 2.67 2.64		
Primary	Primary OutFlow Max=0.05 cfs @ 15.24 hrs HW=861.32' (Free Discharge)						


Primary OutFlow Max=0.05 cfs @ 15.24 hrs HW=861.32' (Free Discharge)

-1=Culvert (Passes 0.05 cfs of 2.52 cfs potential flow)

-2=Orifice/Grate (Controls 0.00 cfs)

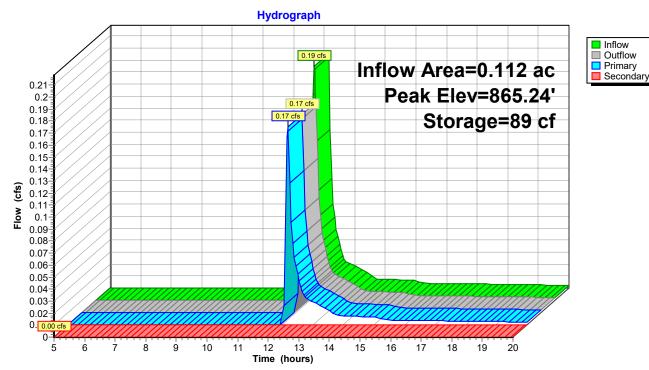
-3=Orifice/Grate (Orifice Controls 0.05 cfs @ 4.20 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=860.50' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 1P: Wet Pond

Summary for Pond 2P: SW Biofilter #1

Inflow Area =	0.112 ac, 47.32% Impervious, Inflow De	epth > 0.92" for 2-Year event
Inflow =	0.19 cfs @ 12.14 hrs, Volume=	0.009 af
Outflow =	0.17 cfs @ 12.18 hrs, Volume=	0.007 af, Atten= 15%, Lag= 2.5 min
Primary =	0.17 cfs @ 12.18 hrs, Volume=	0.007 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 865.24' @ 12.18 hrs Surf.Area= 365 sf Storage= 89 cf

Plug-Flow detention time= 65.7 min calculated for 0.007 af (83% of inflow) Center-of-Mass det. time= 20.0 min (817.8 - 797.7)

Volume	Invert	Avail.Stor	rage S	Storage	Description		
#1	864.50'	12			Stage Data (Pr verall x 33.0%	ismatic) Listed below (Recalc)	
#2	865.50'	19	97 cf C	Custom		ismatic) Listed below (Recalc)	
#3	867.50'	48			-	ismatic) Listed below (Recalc)	
		80)3 cf T	otal Av	ailable Storage		
Elevatio		f.Area	Inc.S		Cum.Store		
(fee	1	(sq-ft)	(cubic-f	,	(cubic-feet)		
864.5	-	365		0	0		
865.5	0	365		365	365		
Elevatio	n Sur	f.Area	Inc.S	tore	Cum.Store		
(fee		(sq-ft)	(cubic-f	/	(cubic-feet)		
865.5		365		0	0		
867.5	0	365		730	730		
Elevatio	n Sur	f.Area	Inc.S	tore	Cum.Store		
(fee	t)	(sq-ft)	(cubic-f	feet)	(cubic-feet)		
867.5	-	350		0	0		
868.0	0	1,590		485	485		
Device	Routing	Invert	Outlet	Device	S		
#1	Primary	865.00'	12.0"	Round	Culvert		
	·					headwall, Ke= 0.900	
						864.68' S= 0.0200 '/' Cc= 0.900	
						or, Flow Area= 0.79 sf	
#2	Device 1	865.00'			000" Diameter,		
					be, Hazen-Willi Elev. = 865.00' /		
#3	Device 1	868.00'					
#4	Secondary	867.85'					
	,					0.80 1.00 1.20 1.40 1.60 1.80 2.00	
			2.50 3	3.00 3.5	50 4.00 4.50 5	5.00 5.50	
						70 2.68 2.68 2.66 2.65 2.65 2.65	
			2.65 2	2.67 2.6	6 2.68 2.70 2	2.74 2.79 2.88	

Primary OutFlow Max=0.16 cfs @ 12.18 hrs HW=865.23' (Free Discharge) 1=Culvert (Passes 0.16 cfs of 0.18 cfs potential flow) 2=Drain Tile (Tube Controls 0.16 cfs @ 0.81 fps) 3=Standpipe (Controls 0.00 cfs)

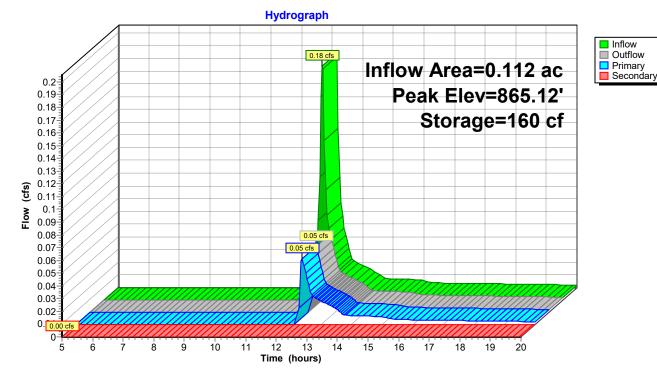
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=864.50' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 2P: SW Biofilter #1

Summary for Pond 3P: SE Biofilter #2

Inflow Area =	0.112 ac, 46.43% Impervious, Inflow De	epth > 0.87" for 2-Year event
Inflow =	0.18 cfs @ 12.14 hrs, Volume=	0.008 af
Outflow =	0.05 cfs @ 12.38 hrs, Volume=	0.005 af, Atten= 72%, Lag= 14.7 min
Primary =	0.05 cfs @ 12.38 hrs, Volume=	0.005 af
Secondary =	0.00 cfs $\overline{@}$ 5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 865.12' @ 12.38 hrs Surf.Area= 880 sf Storage= 160 cf


Plug-Flow detention time= 126.6 min calculated for 0.005 af (58% of inflow) Center-of-Mass det. time= 58.6 min (858.3 - 799.7)

Volume	Invert	Avail.Stora	age Storaç	age Description
#1	864.00'	145		om Stage Data (Prismatic) Listed below (Recalc) of Overall x 33.0% Voids
#2	865.00'	238	B cf Custo	om Stage Data (Prismatic) Listed below (Recalc) of Overall x 27.0% Voids
#3	867.00'	985		om Stage Data (Prismatic) Listed below (Recalc)
		1,368	3 cf Total	Available Storage
Elevatio		f.Area	Inc.Store	
(fee	/	\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot	cubic-feet)	
864.0	-	440	0	
865.0	0	440	440	440
Elevatio	n Sur	f.Area	Inc.Store	Cum.Store
(fee	t)	(sq-ft) (cubic-feet)	(cubic-feet)
865.0	0	440	0	
867.0	0	440	880	880
Elevatio	n Sur	f.Area	Inc.Store	Cum.Store
(fee	t)	(sq-ft) (cubic-feet)	(cubic-feet)
867.0	0	440	0	
868.0	0	1,530	985	985
Device	Routing	Invert	Outlet Devi	rices
#1	Primary	865.00'	12.0" Rou	Ind Culvert
	,			CPP, projecting, no headwall, Ke= 0.900
				et Invert= 865.00' / 864.68' S= 0.0097 '/' Cc= 0.900
				Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Device 1			6.000" Diameter, C= 0.600
				Tube, Hazen-Williams C= 130
#3	Device 1			et Elev. = 865.00' / 865.00' z. Orifice/Grate C= 0.600
#3	Device I			weir flow at low heads
#4	Secondary			x 5.0' breadth Broad-Crested Rectangular Weir
	,) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
				3.50 4.00 4.50 5.00 5.50
			Coef. (Engl	llish) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65

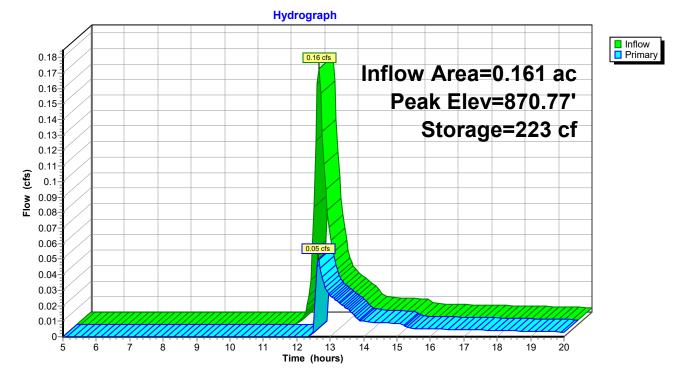
2.65 2.67 2.66 2.68 2.70 2.74 2.79 2.88

Primary OutFlow Max=0.05 cfs @ 12.38 hrs HW=865.12' (Free Discharge) 1=Culvert (Inlet Controls 0.05 cfs @ 0.94 fps) 2=Drain Tile (Passes 0.05 cfs of 0.06 cfs potential flow) 3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=864.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 3P: SE Biofilter #2

Summary for Pond 5P: N Rain Garden

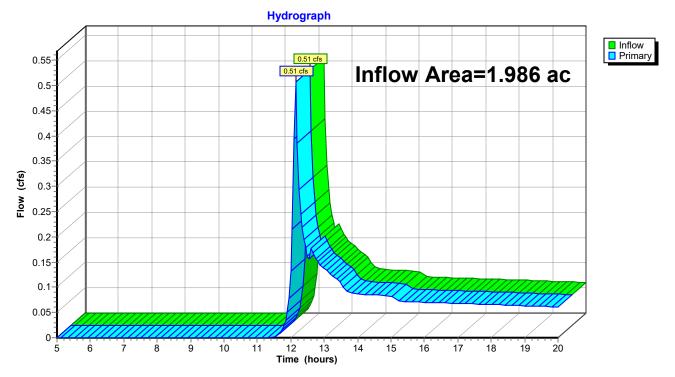

Inflow Area	=	0.161 ac, 40.99% Impervious, Inflow Depth > 0.77" for 2-Year event
Inflow =	=	0.16 cfs @ 12.24 hrs, Volume= 0.010 af
Outflow =	=	0.05 cfs @ 12.65 hrs, Volume= 0.005 af, Atten= 70%, Lag= 24.2 min
Primary =	=	0.05 cfs @ 12.65 hrs, Volume= 0.005 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 870.77' @ 12.65 hrs Surf.Area= 421 sf Storage= 223 cf

Plug-Flow detention time= 144.4 min calculated for 0.005 af (52% of inflow) Center-of-Mass det. time= 71.2 min (881.5 - 810.3)

Invert A	vail.Storage	Storage D	Description	
870.00'	330 cf	Custom S	Stage Data (Pris	smatic) Listed below (Recalc)
(sq-1 16	ft) (cub 60		Cum.Store (cubic-feet) 0 330	
ıting	Invert Out	let Devices		
nary 8	Hea 2.50 Coe	ad (feet) 0.2 0 3.00 3.50 ef. (English)	20 0.40 0.60 0 0 4.00 4.50 5.0 2.38 2.54 2.6	.80 1.00 1.20 1.40 1.60 1.80 2.00 00 5.50 9 2.68 2.67 2.67 2.65 2.66 2.66
	370.00' Surf.Are (sq-1 16 50 iting	370.00' 330 cf Surf.Area In (sq-ft) (cub 160 500 Iting Invert Out nary 870.75' 8.0' Hea 2.50 Coe	370.00' 330 cf Custom \$ Surf.Area Inc.Store (sq-ft) (cubic-feet) 160 0 500 330 tting Invert Outlet Devices nary 870.75' 8.0' long x 4.0 Head (feet) 0.2 2.50 3.00 3.50	Barron Color Barron Color<

Primary OutFlow Max=0.05 cfs @ 12.65 hrs HW=870.77' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 0.05 cfs @ 0.33 fps)



Pond 5P: N Rain Garden

Summary for Link 6L: Site Total

Inflow Are	a =	1.986 ac, 39.68% Impervious, Inflow Depth > 0.38" for 2-Year event	t
Inflow	=	0.51 cfs @ 12.15 hrs, Volume= 0.063 af	
Primary	=	0.51 cfs @ 12.15 hrs, Volume= 0.063 af, Atten= 0%, Lag= 0.0	min

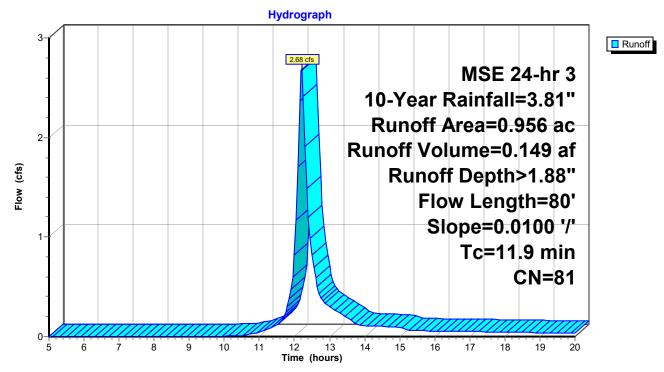
Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Link 6L: Site Total

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: To Pond Flow Length=80'	Runoff Area=0.956 ac 54.81% Impervious Runoff Depth>1.88" Slope=0.0100 '/' Tc=11.9 min CN=81 Runoff=2.68 cfs 0.149 af
Subcatchment 2S: To SW Biofilter	Runoff Area=0.112 ac 47.32% Impervious Runoff Depth>1.73" Tc=6.0 min CN=79 Runoff=0.36 cfs 0.016 af
Subcatchment 3S: To SE Biofilter	Runoff Area=0.112 ac 46.43% Impervious Runoff Depth>1.66" Tc=6.0 min CN=78 Runoff=0.35 cfs 0.015 af
Subcatchment 4S: To Filter Strip	Runoff Area=0.253 ac 1.19% Impervious Runoff Depth>0.67" Tc=6.0 min CN=61 Runoff=0.29 cfs 0.014 af
Subcatchment 5S: To N Rain Garden Flow Length=100'	Runoff Area=0.161 ac 40.99% Impervious Runoff Depth>1.51" Slope=0.0100 '/' Tc=14.2 min CN=76 Runoff=0.33 cfs 0.020 af
Subcatchment 6S: To S Swale	Runoff Area=0.118 ac 0.00% Impervious Runoff Depth>0.67" Tc=6.0 min CN=61 Runoff=0.13 cfs 0.007 af
Subcatchment 7S: Uncontrolled	Runoff Area=0.274 ac 32.85% Impervious Runoff Depth>1.52" Tc=6.0 min CN=76 Runoff=0.78 cfs 0.035 af
Pond 1P: Wet Pond Primary=0.07 cfs	Peak Elev=861.98' Storage=5,914 cf Inflow=3.27 cfs 0.176 af 0.046 af Secondary=0.00 cfs 0.000 af Outflow=0.07 cfs 0.046 af
Pond 2P: SW Biofilter #1 Primary=0.34 cfs	Peak Elev=865.38' Storage=106 cf Inflow=0.36 cfs 0.016 af 0.015 af Secondary=0.00 cfs 0.000 af Outflow=0.34 cfs 0.015 af
Pond 3P: SE Biofilter #2 Primary=0.33 cfs	Peak Elev=865.38' Storage=190 cf Inflow=0.35 cfs 0.015 af 0.012 af Secondary=0.00 cfs 0.000 af Outflow=0.33 cfs 0.012 af
Pond 5P: N Rain Garden	Peak Elev=870.82' Storage=244 cf Inflow=0.33 cfs 0.020 af Outflow=0.33 cfs 0.015 af
Link 6L: Site Total	Inflow=1.24 cfs 0.116 af Primary=1.24 cfs 0.116 af
Total Runoff Area = 1 986	ac Runoff Volume = 0.257 af Average Runoff Denth = 1.55°

Total Runoff Area = 1.986 ac Runoff Volume = 0.257 af Average Runoff Depth = 1.55" 60.32% Pervious = 1.198 ac 39.68% Impervious = 0.788 ac

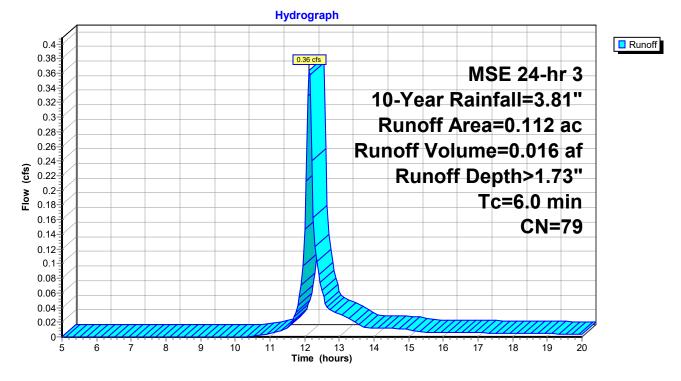

Summary for Subcatchment 1S: To Pond

Runoff = 2.68 cfs @ 12.20 hrs, Volume= 0.149 af, Depth> 1.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=3.81"

	Area	(ac)	CN	l Dese	cription					
*	0.	208	98	3 Build	dings					
*	0.	207	98	B Pave	ement					
*	0.	050	98	3 Drive	eways					
*	0.	011	98	3 Side	walks					
	0.	432	6	1 >75	% Grass co	over, Good	, HSG B			
*	0.	048	98	3 Wet	Pond					
	0.	956	8	1 Weig	ghted Aver	age				
	0.	432		45.1	9% Pervio	us Area				
	0.	524		54.8	1% Imperv	ious Area				
					·					
	Tc	Leng	th	Slope	Velocity	Capacity	Description			
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	-			
	11.9	6	30	0.0100	0.11		Sheet Flow,			
							Grass: Short	n= 0.150	P2= 2.64"	

Subcatchment 1S: To Pond

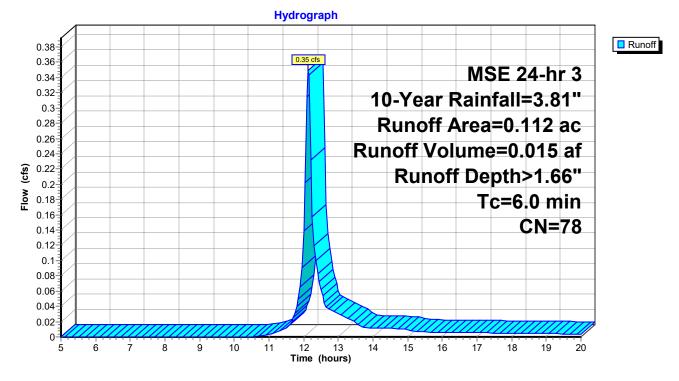

Summary for Subcatchment 2S: To SW Biofilter

Runoff = 0.36 cfs @ 12.13 hrs, Volume= 0.016 af, Depth> 1.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=3.81"

	Area ((ac)	CN	Desc	cription					
*	0.0	053	98	Build	Buildings					
_	0.0	059	61	>75%	6 Grass co	over, Good	I, HSG B			
	0.	112	79	Weig	ghted Aver	age				
	0.0	059		52.6	8% Pervio	us Area				
	0.0	053		47.3	2% Imperv	vious Area				
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	6.0						Direct Entry,			
_	0. 0.0 0.0 Tc (min)	112 059 053 Leng	79 th \$	Weig 52.68 47.32 Slope	ghted Aver 8% Pervio 2% Imperv Velocity	rage us Area vious Area Capacity	Description			

Subcatchment 2S: To SW Biofilter

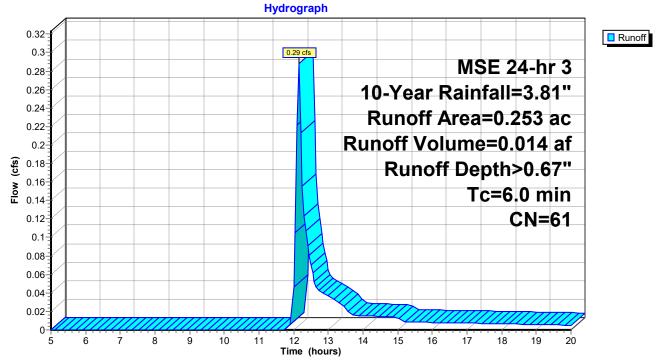

Summary for Subcatchment 3S: To SE Biofilter

Runoff = 0.35 cfs @ 12.14 hrs, Volume= 0.015 af, Depth> 1.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=3.81"

	Area	(ac)	CN	Desc	cription		
*	0.	052	98	Build	lings		
	0.	060	61	>75%	% Grass co	over, Good,	, HSG B
	0.	112	78	Weig	ghted Aver	age	
	0.	060		53.5	7% Pervio	us Area	
	0.	052		46.4	3% Imperv	vious Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	6.0				/ /		Direct Entry,

Subcatchment 3S: To SE Biofilter

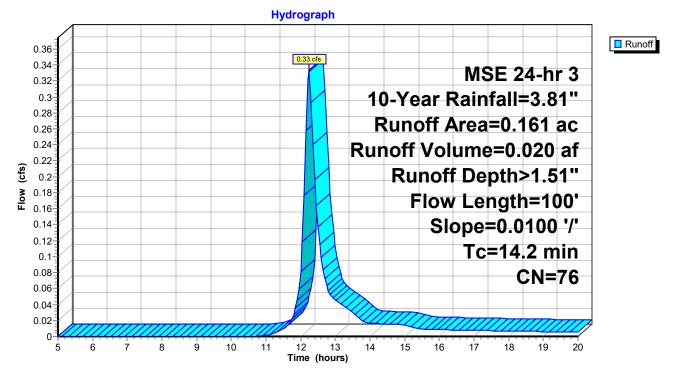


Summary for Subcatchment 4S: To Filter Strip

Runoff = 0.29 cfs @ 12.15 hrs, Volume= 0.014 af, Depth> 0.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=3.81"

	Area	(ac)	CN	Desc	cription						
	0.	250	61	>75%	75% Grass cover, Good, HSG B						
*	0.	003	98	Side	walks						
	0.	253	61	Weig	ghted Aver	age					
	0.	250		98.8	1% Pervio	us Area					
	0.	003	003 1.19% Impervious Area								
	Тс	Leng		Slope	Velocity	Capacity	Description				
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)					
	6.0						Direct Entry,				
	Subcatchment 4S: To Filter Strip										


Summary for Subcatchment 5S: To N Rain Garden

Runoff = 0.33 cfs @ 12.23 hrs, Volume= 0.020 af, Depth> 1.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=3.81"

	Area	(ac)	CN	Desc	cription					
*	0.	063	98	Build	lings					
*	0.	003	98	Side	walks					
	0.	095	61	>75%	6 Grass co	over, Good	, HSG B			
	0.	161	76	Weig	ghted Aver	age				
	0.	095		59.0	1% Pervio	us Area				
	0.	066		40.99	9% Imperv	vious Area				
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	14.2	10	0 0	.0100	0.12		Sheet Flow,			
							Grass: Short	n= 0.150	P2= 2.64"	

Subcatchment 5S: To N Rain Garden

5

9

10

11

12

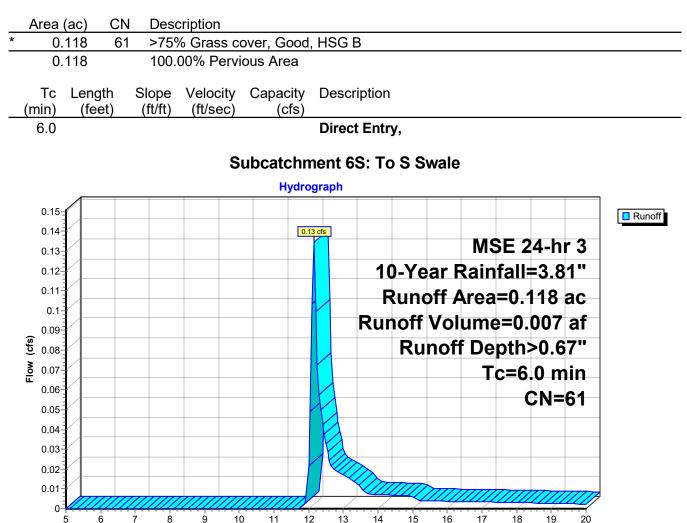
Time (hours)

13

14

16

18

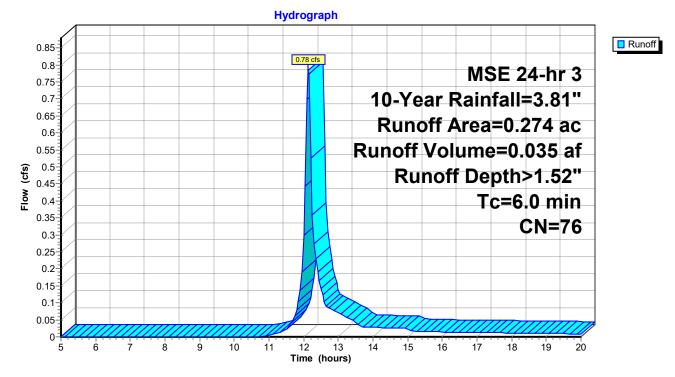

19

20

Summary for Subcatchment 6S: To S Swale

0.13 cfs @ 12.15 hrs, Volume= 0.007 af, Depth> 0.67" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=3.81"


Summary for Subcatchment 7S: Uncontrolled

Runoff 0.78 cfs @ 12.14 hrs, Volume= 0.035 af, Depth> 1.52" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-Year Rainfall=3.81"

	Area (ac)) CN	Des	cription		
*	0.005	5 98	B Pave	ement		
*	0.081	98	Driv	eways		
*	0.004	. 98	Side	walks		
	0.033	61	>759	% Grass co	over, Good,	, HSG B
*	0.097	' 61	Gras	ss B		
	0.054	- 73	Woo	ods/grass o	omb., Poor	r, HSG B
	0.274	- 76	Wei	ghted Aver	age	
	0.184	Ļ	67.1	5% Pervio	us Area	
	0.090)	32.8	5% Imperv	vious Area	
	Tc Le	ngth	Slope	Velocity	Capacity	Description
	(min) (feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.0					Direct Entry,

Subcatchment 7S: Uncontrolled

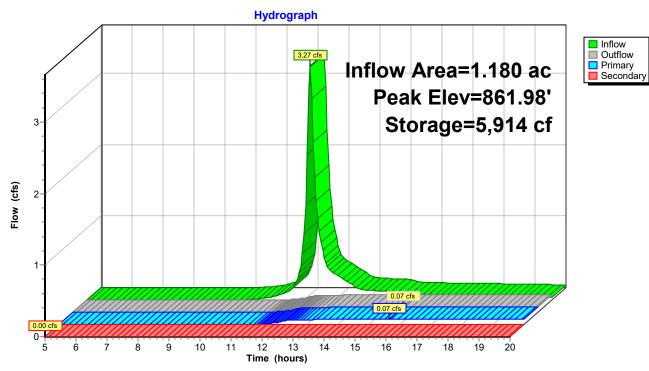
Summary for Pond 1P: Wet Pond

Inflow Area =	1.180 ac, 53.31% Impervious, Inflow De	epth > 1.79" for 10-Year event
Inflow =	3.27 cfs @ 12.19 hrs, Volume=	0.176 af
Outflow =	0.07 cfs @ 15.65 hrs, Volume=	0.046 af, Atten= 98%, Lag= 207.3 min
Primary =	0.07 cfs @ 15.65 hrs, Volume=	0.046 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 861.98' @ 15.65 hrs Surf.Area= 4,971 sf Storage= 5,914 cf

Plug-Flow detention time= 247.5 min calculated for 0.046 af (26% of inflow) Center-of-Mass det. time= 172.0 min (963.3 - 791.3)

Volume	Invert	Avail.Sto	rage Storage	Description				
#1	860.50'	18,81	13 cf Custom	Stage Data (Pr	ismatic) Listed below (Recalc)			
	-	. .						
Elevatio		rf.Area	Inc.Store	Cum.Store				
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)				
860.5	50	3,050	0	0				
861.0	00	3,680	1,683	1,683				
862.0	00	5,000	4,340	6,023				
863.0	00	6,400	5,700	11,723				
864.0	00	7,780	7,090	18,813				
Device	Routing	Invert	Outlet Device	S				
#1	Primary	860.11'	12.0" Round	Culvert				
	,		L= 22.0' CM	P, projecting, no	headwall, Ke= 0.900			
					860.00' S= 0.0050 '/' Cc= 0.900			
					or, Flow Area= 0.79 sf			
#2	Device 1	862.50'		Drifice/Grate				
				ir flow at low hea				
#3	Device 1	860.50'		fice/Grate C=				
#4	Secondary	863.00'			oad-Crested Rectangular Weir			
	eeeenaary	000.00			0.80 1.00 1.20 1.40 1.60			
			· · ·		70 2.69 2.68 2.69 2.67 2.64			
				1) 2.70 2.00 Z.	10 2.00 2.00 2.00 2.01 2.04			
Primarv	Primary OutFlow Max=0.07 cfs @ 15.65 hrs_HW=861.98' (Free Discharge)							


Primary OutFlow Max=0.07 cfs @ 15.65 hrs HW=861.98' (Free Discharge)

1=Culvert (Passes 0.07 cfs of 3.49 cfs potential flow)

2=Orifice/Grate (Controls 0.00 cfs)

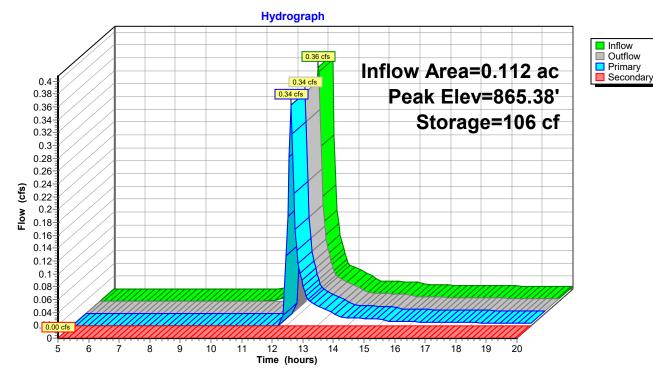
-3=Orifice/Grate (Orifice Controls 0.07 cfs @ 5.73 fps)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=860.50' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 1P: Wet Pond

Summary for Pond 2P: SW Biofilter #1

Inflow Area =	0.112 ac, 47.32% Impervious, Inflow De	epth > 1.73" for 10-Year event
Inflow =	0.36 cfs @ 12.13 hrs, Volume=	0.016 af
Outflow =	0.34 cfs @ 12.16 hrs, Volume=	0.015 af, Atten= 6%, Lag= 1.3 min
Primary =	0.34 cfs @ 12.16 hrs, Volume=	0.015 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 865.38' @ 12.16 hrs Surf.Area= 365 sf Storage= 106 cf

Plug-Flow detention time= 40.8 min calculated for 0.015 af (91% of inflow) Center-of-Mass det. time= 12.1 min (799.4 - 787.3)

Volume	Invert	Avail.Stor	age St	torage Description
#1	864.50'	12		Sustom Stage Data (Prismatic) Listed below (Recalc) 65 cf Overall x 33.0% Voids
#2	865.50'	19	7 cf C u	Sustom Stage Data (Prismatic) Listed below (Recalc) 30 cf Overall x 27.0% Voids
#3	867.50'	48		Sustom Stage Data (Prismatic) Listed below (Recalc)
		80	3 cf Tc	otal Available Storage
Elevatio		f.Area	Inc.Sto	-
(fee	/	(sq-ft)	(cubic-fe	
864.5		365		0 0
865.5	0	365	3	365 365
Elevatio	n Sur	f.Area	Inc.Sto	tore Cum.Store
(fee	t)	(sq-ft)	(cubic-fe	eet) (cubic-feet)
865.5	0	365		0 0
867.5	0	365	7	730 730
Elevatio	n Sur	f.Area	Inc.Sto	tore Cum.Store
(fee	t)	(sq-ft)	(cubic-fe	eet) (cubic-feet)
867.5	0	350		0 0
868.0	0	1,590	4	485 485
Device	Routing	Invert	Outlet D	Devices
#1	Primary	865.00'	12.0" F	Round Culvert
	5			0' CPP, projecting, no headwall, Ke= 0.900
				Outlet Invert= 865.00' / 864.68' S= 0.0200 '/' Cc= 0.900
				10 PVC, smooth interior, Flow Area= 0.79 sf
#2	Device 1	865.00'		Tile 6.000" Diameter, C= 0.600
				ong Tube, Hazen-Williams C= 130
#3	Device 1	868.00'		Outlet Elev. = 865.00' / 865.00' Horiz. Standpipe C= 0.600 Limited to weir flow at low heads
#3 #4	Secondary	867.85'		ong x 5.0' breadth Broad-Crested Rectangular Weir
#4	Secondary	007.00		feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
				0.00 3.50 4.00 4.50 5.00 5.50
				English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65
				2.67 2.66 2.68 2.70 2.74 2.79 2.88

Primary OutFlow Max=0.34 cfs @ 12.16 hrs HW=865.38' (Free Discharge) 1=Culvert (Passes 0.34 cfs of 0.45 cfs potential flow) 2=Drain Tile (Tube Controls 0.34 cfs @ 1.71 fps) 3=Standpipe (Controls 0.00 cfs)

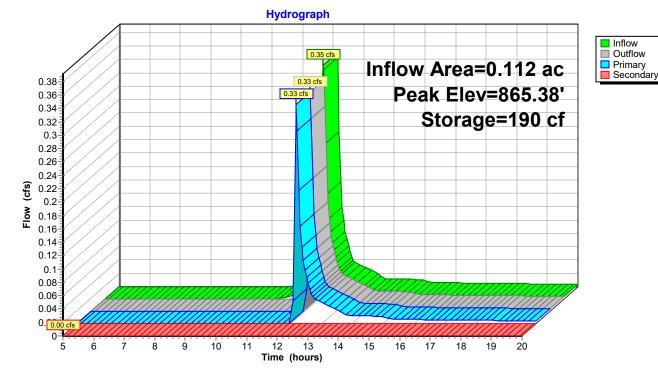
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=864.50' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 2P: SW Biofilter #1

Summary for Pond 3P: SE Biofilter #2

Inflow Area =	0.112 ac, 46.43% Impervious, Inflow De	epth > 1.66" for 10-Year event
Inflow =	0.35 cfs @ 12.14 hrs, Volume=	0.015 af
Outflow =	0.33 cfs @ 12.17 hrs, Volume=	0.012 af, Atten= 6%, Lag= 2.2 min
Primary =	0.33 cfs @ 12.17 hrs, Volume=	0.012 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 865.38' @ 12.17 hrs Surf.Area= 880 sf Storage= 190 cf


Plug-Flow detention time= 75.1 min calculated for 0.012 af (78% of inflow) Center-of-Mass det. time= 25.2 min (814.2 - 789.0)

Volume	Invert	Avail.Stor	age Stor	age Description	
#1	864.00'	14			rismatic) Listed below (Recalc)
#2	865.00'	23	8 cf Cus	cf Overall x 33.0% tom Stage Data (P cf Overall x 27.0%	rismatic) Listed below (Recalc)
#3	867.00'	98			rismatic) Listed below (Recalc)
		1,36		I Available Storage	
Elevatio	n Sur	f.Area	Inc.Stor	e Cum.Store	
(feet			(cubic-feet	-	
864.00	0	440		0 0	
865.00	0	440	44	D 440	
Elevatio	n Sur	f.Area	Inc.Store	-	
(feet	1		(cubic-feet	//	
865.00	-	440		0 C	
867.00	0	440	88	0880	
Elevatio	n Sur	f.Area	Inc.Store	e Cum.Store	
(feet	.)	(sq-ft)	(cubic-feet) (cubic-feet)	
867.00	-	440		0 C	
868.00	0	1,530	98	5 985	
Device	Routing	Invert	Outlet De	vices	
	Primary	865.00'	12.0" Ro	und Culvert	
	2				o headwall, Ke= 0.900
					/ 864.68' S= 0.0097 '/' Cc= 0.900
	.				nooth interior, Flow Area= 0.79 sf
#2	Device 1	865.00'		6.000" Diameter,	
				g Tube, Hazen-Wil ilet Elev. = 865.00',	
#3	Device 1	868.00'		iz. Orifice/Grate	
	Device	000.00		weir flow at low he	
#4	Secondary	867.85'			oad-Crested Rectangular Weir
	-				0.80 1.00 1.20 1.40 1.60 1.80 2.00
				3.50 4.00 4.50	
			Coef. (En	glish) 2.34 2.50 2	2.70 2.68 2.68 2.66 2.65 2.65 2.65

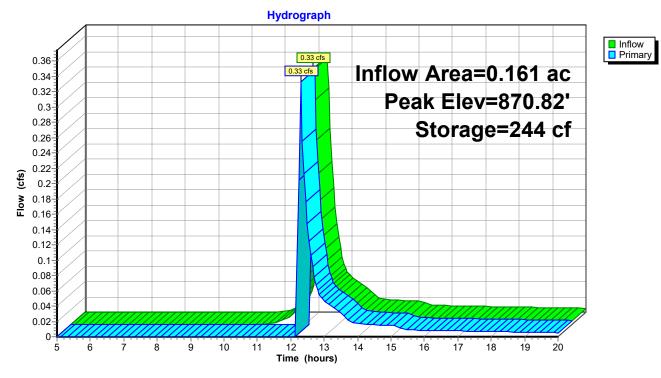
2.65 2.67 2.66 2.68 2.70 2.74 2.79 2.88

Primary OutFlow Max=0.30 cfs @ 12.17 hrs HW=865.35' (Free Discharge) 1=Culvert (Passes 0.30 cfs of 0.39 cfs potential flow) 2=Drain Tile (Tube Controls 0.30 cfs @ 1.51 fps) 3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=864.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 3P: SE Biofilter #2

Summary for Pond 5P: N Rain Garden

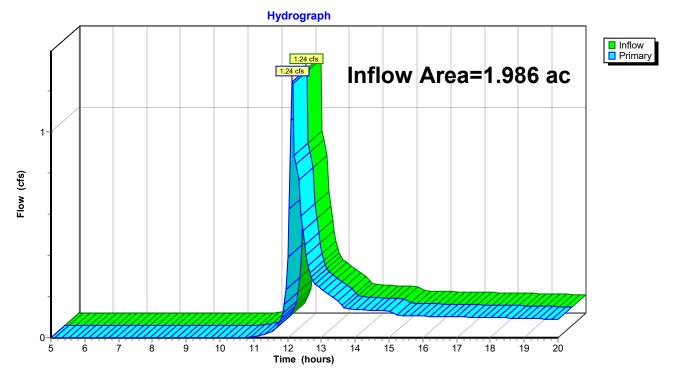

Inflow Area =		0.161 ac, 4	10.99% Impervious, Inflow	Depth > 1.51" for 10-Year event						
Inflow	=	0.33 cfs @	12.23 hrs, Volume=	0.020 af						
Outflow	=	0.33 cfs @	12.31 hrs, Volume=	0.015 af, Atten= 0%, Lag= 4.3 min						
Primary	=	0.33 cfs @	12.31 hrs, Volume=	0.015 af						
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs										
Peak Elev= 870.82' @ 12.31 hrs Surf.Area= 438 sf Storage= 244 cf										

Plug-Flow detention time= 79.1 min calculated for 0.015 af (75% of inflow)

Center-of-Mass det. time= 26.7 min (825.5 - 798.8)

Volume	Inve	ert Avail.Sto	orage Storage	Description	
#1	870.0)0' 3	30 cf Custom	Stage Data (Pr	ismatic) Listed below (Recalc)
Elevation (feet	t)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
870.0	0	160	0	0	
871.0	0	500	330	330	
Device #1	Routing Primary	Invert 870.75'	Head (feet) 0 2.50 3.00 3.4 Coef. (English	.0' breadth Broa 0.20 0.40 0.60 50 4.00 4.50 5	69 2.68 2.67 2.67 2.65 2.66 2.66

Primary OutFlow Max=0.32 cfs @ 12.31 hrs HW=870.82' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 0.32 cfs @ 0.61 fps)



Pond 5P: N Rain Garden

Summary for Link 6L: Site Total

Inflow Area	a =	1.986 ac, 39.68% Impervious, Inflow Depth > 0.70" for 10-Year event	
Inflow	=	1.24 cfs @ 12.14 hrs, Volume= 0.116 af	
Primary	=	1.24 cfs @ 12.14 hrs, Volume= 0.116 af, Atten= 0%, Lag= 0.0 m	nin

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

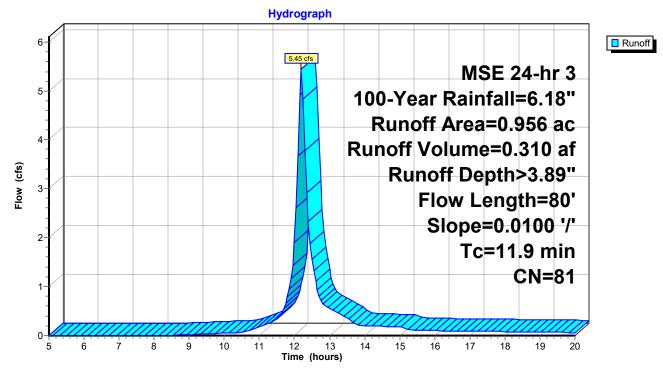
Link 6L: Site Total

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: To Pond Flow Length=80	Runoff Area=0.956 ac 54.81% Impervious Runoff Depth>3.89" Slope=0.0100 '/' Tc=11.9 min CN=81 Runoff=5.45 cfs 0.310 af
Subcatchment 2S: To SW Biofilter	Runoff Area=0.112 ac 47.32% Impervious Runoff Depth>3.69" Tc=6.0 min CN=79 Runoff=0.76 cfs 0.034 af
Subcatchment 3S: To SE Biofilter	Runoff Area=0.112 ac 46.43% Impervious Runoff Depth>3.59" Tc=6.0 min CN=78 Runoff=0.74 cfs 0.034 af
Subcatchment 4S: To Filter Strip	Runoff Area=0.253 ac 1.19% Impervious Runoff Depth>2.02" Tc=6.0 min CN=61 Runoff=0.96 cfs 0.042 af
Subcatchment 5S: To N Rain Garden Flow Length=100	Runoff Area=0.161 ac 40.99% Impervious Runoff Depth>3.39" Slope=0.0100 '/' Tc=14.2 min CN=76 Runoff=0.75 cfs 0.045 af
Subcatchment 6S: To S Swale	Runoff Area=0.118 ac 0.00% Impervious Runoff Depth>2.02" Tc=6.0 min CN=61 Runoff=0.45 cfs 0.020 af
Subcatchment 7S: Uncontrolled	Runoff Area=0.274 ac 32.85% Impervious Runoff Depth>3.39" Tc=6.0 min CN=76 Runoff=1.72 cfs 0.077 af
Pond 1P: Wet Pond Primary=1.75 cfs	Peak Elev=862.62' Storage=9,375 cf Inflow=6.70 cfs 0.373 af 0.174 af Secondary=0.00 cfs 0.000 af Outflow=1.75 cfs 0.174 af
Pond 2P: SW Biofilter #1 Primary=0.66 cfs	Peak Elev=865.80' Storage=150 cf Inflow=0.76 cfs 0.034 af 0.033 af Secondary=0.00 cfs 0.000 af Outflow=0.66 cfs 0.033 af
Pond 3P: SE Biofilter #2 Primary=0.63 cfs	Peak Elev=865.77' Storage=236 cf Inflow=0.74 cfs 0.034 af 0.030 af Secondary=0.00 cfs 0.000 af Outflow=0.63 cfs 0.030 af
Pond 5P: N Rain Garden	Peak Elev=870.87' Storage=266 cf Inflow=0.75 cfs 0.045 af Outflow=0.74 cfs 0.040 af
Link 6L: Site Total	Inflow=3.71 cfs 0.354 af Primary=3.71 cfs 0.354 af
Total Runoff Area = 1 986	ac Runoff Volume = 0.563 af Average Runoff Depth = 3.40°

Total Runoff Area = 1.986 ac Runoff Volume = 0.563 af Average Runoff Depth = 3.40" 60.32% Pervious = 1.198 ac 39.68% Impervious = 0.788 ac

Summary for Subcatchment 1S: To Pond


Runoff = 5.45 cfs @ 12.20 hrs, Volume= 0.310 af, Depth> 3.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=6.18"

_	Area	(ac)	CN	Desc	ription					
*	0.	208	98	Build	lings					
*	0.	207	98	Pave	ement					
*	0.	050	98	Drive	eways					
*	0.	011	98	Side	walks					
	0.	432	61	>75%	6 Grass co	over, Good	, HSG B			
*	0.	048	98	Wet	Pond					
	0.956 81 Weighted Average									
	0.	432		45.1	9% Pervio	us Area				
	0.	524		54.8 [°]	1% Imperv	vious Area				
	Тс	Lengt	h	Slope	Velocity	Capacity	Description			
	(min)	(feet	t)	(ft/ft)	(ft/sec)	(cfs)				
	11.9	8	0 0	0.0100	0.11		Sheet Flow,			
							Grass Short	n = 0.150	D2-261"	

Grass: Short n= 0.150 P2= 2.64

Subcatchment 1S: To Pond

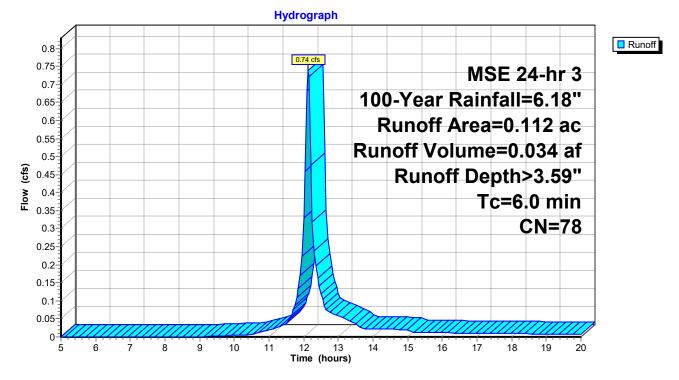
Summary for Subcatchment 2S: To SW Biofilter

Runoff = 0.76 cfs @ 12.13 hrs, Volume= 0.034 af, Depth> 3.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=6.18"

	Area ((ac)	CN	Desc	cription				
*	0.0	053	98	Build	lings				
	0.0	059	61	>75%	% Grass co	over, Good	d, HSG B		
	0.112 79 Weighted Average								
	0.0	059		52.6	8% Pervio	us Area			
	0.0	053		47.3	2% Imperv	vious Area			
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	6.0						Direct Entry,		

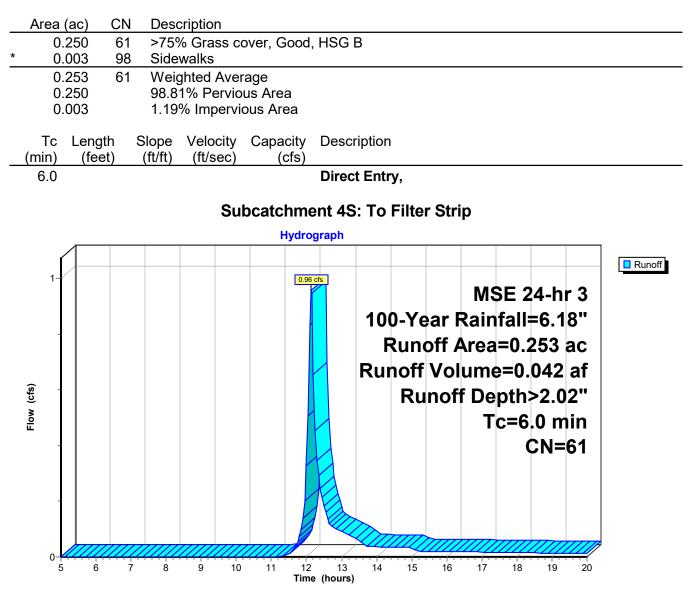
Subcatchment 2S: To SW Biofilter


Summary for Subcatchment 3S: To SE Biofilter

Runoff = 0.74 cfs @ 12.13 hrs, Volume= 0.034 af, Depth> 3.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=6.18"

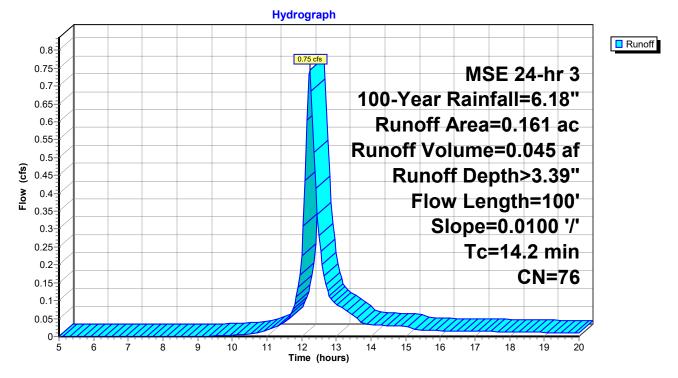
	Area	(ac)	CN	Desc	cription						
*	0.	052	98	Build	lings						
	0.	060	61	>75%	% Grass co	over, Good,	, HSG B				
	0.	0.112 78 Weighted Average									
	0.										
	0.	052		46.4	3% Imperv	vious Area					
	Tc Length (min) (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	6.0				/ /		Direct Entry,				


Subcatchment 3S: To SE Biofilter

Summary for Subcatchment 4S: To Filter Strip

Runoff = 0.96 cfs @ 12.14 hrs, Volume= 0.042 af, Depth> 2.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=6.18"


Summary for Subcatchment 5S: To N Rain Garden

Runoff = 0.75 cfs @ 12.23 hrs, Volume= 0.045 af, Depth> 3.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=6.18"

	Area	(ac)	CN	Desc	cription					
*	0.	063	98	Build	lings					
*	0.	003	98	Side	walks					
	0.	095	61	>75%	% Grass co	over, Good	, HSG B			
	0.	161	76	Weig	ghted Aver	age				
	0.	095		59.0	1% Pervio	us Area				
	0.	066		40.99	9% Imperv	vious Area				
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	14.2	10	0 0	0.0100	0.12		Sheet Flow,			
							Grass: Short	n= 0.150	P2= 2.64"	

Subcatchment 5S: To N Rain Garden

0.14 0.12 0.1 0.08 0.06 0.04 0.02

5

6

ż

8

9

10

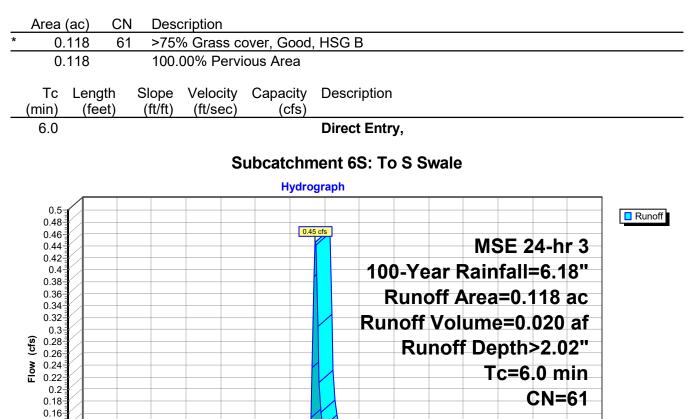
11

12

Time (hours)

13

14


15

16

Summary for Subcatchment 6S: To S Swale

Runoff = 0.45 cfs @ 12.14 hrs, Volume= 0.020 af, Depth> 2.02"

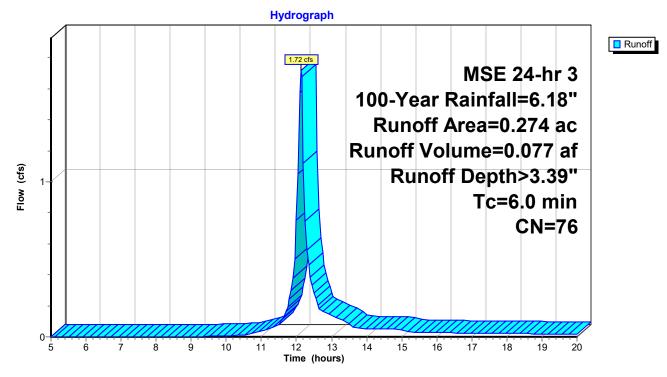
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=6.18"

17

18

19

20


Summary for Subcatchment 7S: Uncontrolled

Runoff = 1.72 cfs @ 12.13 hrs, Volume= 0.077 af, Depth> 3.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-Year Rainfall=6.18"

	Area (ac	;) C	N I	Desc	ription					
*	0.00	59	98	Pavement						
*	0.08	19	98	Drive	eways					
*	0.004	4 9	98 3	Side	walks					
	0.03	36	51 :	>75%	6 Grass co	over, Good,	, HSG B			
*	0.09	76	61 (Gras	s B					
	0.054	0.054 73 Woods/grass comb., Poor, HSG B								
	0.274 76 Weighted Average				hted Aver	age				
	0.184	4	(67.15	5% Pervio	us Area				
	0.090	0	;	32.85	5% Imperv	vious Area				
		ength		оре	Velocity	Capacity	Description			
_	(min)	(feet)	(f	ft/ft)	(ft/sec)	(cfs)				
	6.0						Direct Entry,			

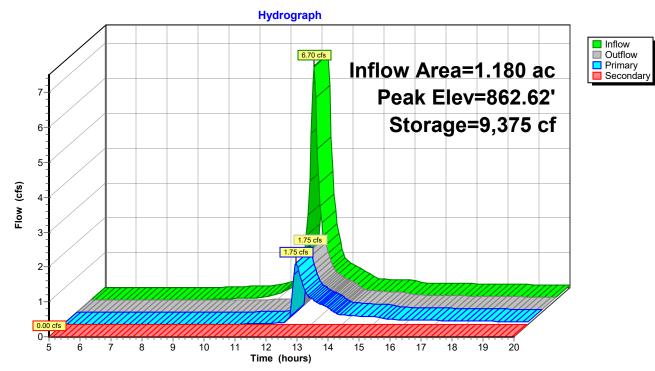
Subcatchment 7S: Uncontrolled

Summary for Pond 1P: Wet Pond

Inflow Area =	1.180 ac, 53.31% Impervious, Inflow D	epth > 3.79" for 100-Year event
Inflow =	6.70 cfs @ 12.19 hrs, Volume=	0.373 af
Outflow =	1.75 cfs @ 12.52 hrs, Volume=	0.174 af, Atten= 74%, Lag= 19.8 min
Primary =	1.75 cfs @ 12.52 hrs, Volume=	0.174 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 862.62' @ 12.52 hrs Surf.Area= 5,864 sf Storage= 9,375 cf

Plug-Flow detention time= 139.9 min calculated for 0.174 af (47% of inflow) Center-of-Mass det. time= 76.0 min (854.4 - 778.4)


Volume	Invert	Avail.Sto	rage Storage	Description				
#1	860.50'	18,8 <i>°</i>	13 cf Custom	Stage Data (Pr	ismatic) Listed below (Recalc)			
				0				
Elevatio		rf.Area	Inc.Store	Cum.Store				
(fee	1	(sq-ft)	(cubic-feet)	(cubic-feet)				
860.5	50	3,050	0	0				
861.0	00	3,680	1,683	1,683				
862.0	00	5,000	4,340	6,023				
863.0	00	6,400	5,700	11,723				
864.0	00	7,780	7,090	18,813				
Device	Routing	Invert	Outlet Device	S				
#1	Primary	860.11'	12.0" Round	Culvert				
	•		L= 22.0' CM	P, projecting, no	o headwall, Ke= 0.900			
			Inlet / Outlet I	nvert= 860.11' /	860.00' S= 0.0050 '/' Cc= 0.900			
			n= 0.011 PV	C, smooth interi	or, Flow Area= 0.79 sf			
#2	Device 1	862.50'		Orifice/Grate	•			
				Limited to weir flow at low heads				
#3	Device 1	860.50'	1.5" Vert. Ori	fice/Grate C=	0.600			
#4	Secondary	863.00'			road-Crested Rectangular Weir			
	,		-		0.80 1.00 1.20 1.40 1.60			
			```		70 2.69 2.68 2.69 2.67 2.64			
	Primary Quitelaw May-170 of a 212 52 bro LIW-962 62' (Free Discharge)							

**Primary OutFlow** Max=1.70 cfs @ 12.52 hrs HW=862.62' (Free Discharge)

-**1=Culvert** (Passes 1.70 cfs of 4.23 cfs potential flow)

-2=Orifice/Grate (Weir Controls 1.61 cfs @ 1.11 fps) -3=Orifice/Grate (Orifice Controls 0.08 cfs @ 6.90 fps)

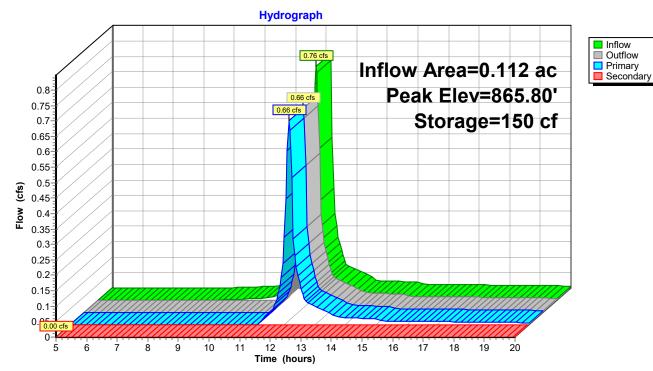
Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=860.50' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)



Pond 1P: Wet Pond

# Summary for Pond 2P: SW Biofilter #1

Inflow Area =	0.112 ac, 47.32% Impervious, Inflow De	epth > 3.69" for 100-Year event
Inflow =	0.76 cfs @ 12.13 hrs, Volume=	0.034 af
Outflow =	0.66 cfs @ 12.16 hrs, Volume=	0.033 af, Atten= 13%, Lag= 2.0 min
Primary =	0.66 cfs @ 12.16 hrs, Volume=	0.033 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 865.80' @ 12.16 hrs Surf.Area= 730 sf Storage= 150 cf

Plug-Flow detention time= 24.7 min calculated for 0.033 af (96% of inflow) Center-of-Mass det. time= 8.8 min (783.6 - 774.8)

Volume	Invert	Avail.Stor	age St	torage Description		
#1	864.50'	12		ustom Stage Data (Prismatic) Listed below (Recalc)		
#2	865.50'	5.50' 197 cf		365 cf Overall x 33.0% Voids Custom Stage Data (Prismatic) Listed below (Recalc)		
			73	30 cf Overall x 27.0% Voids		
#3	867.50'			ustom Stage Data (Prismatic) Listed below (Recalc)		
		80	3 cf To	otal Available Storage		
Elevatio		f.Area	Inc.St			
(fee	t)		(cubic-fe	eet) (cubic-feet)		
864.5		365		0 0		
865.5	0	365	3	365 365		
Elevatio		f.Area	Inc.St			
(fee		(sq-ft)	(cubic-fe			
865.5		365		0 0		
867.5	0	365	7	730 730		
Elevatio		f.Area	Inc.St			
(fee		(sq-ft)	(cubic-fe	eet) (cubic-feet)		
867.5	-	350		0 0		
868.0	0	1,590	2	485 485		
Device	Routing	Invert	Outlet [	Devices		
#1	Primary	865.00'		Round Culvert		
				)' CPP, projecting, no headwall, Ke= 0.900		
				Dutlet Invert= 865.00' / 864.68' S= 0.0200 '/' Cc= 0.900		
				10 PVC, smooth interior, Flow Area= 0.79 sf		
#2	Device 1	865.00'		File 6.000" Diameter, C= 0.600		
				ong Tube,  Hazen-Williams C= 130 Dutlet Elev. = 865.00' / 865.00'		
#3	Device 1	868.00'		<b>Foriz. Standpipe</b> C= 0.600 Limited to weir flow at low heads		
#3 #4	Secondary	867.85'	10.0' long x 5.0' breadth Broad-Crested Rectangular Weir			
77	occorridary	007.00	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00			
				.00 3.50 4.00 4.50 5.00 5.50		
				English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65		
				.67 2.66 2.68 2.70 2.74 2.79 2.88		

Primary OutFlow Max=0.65 cfs @ 12.16 hrs HW=865.78' (Free Discharge) 1=Culvert (Passes 0.65 cfs of 1.55 cfs potential flow) 2=Drain Tile (Tube Controls 0.65 cfs @ 3.30 fps) 3=Standpipe (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=864.50' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

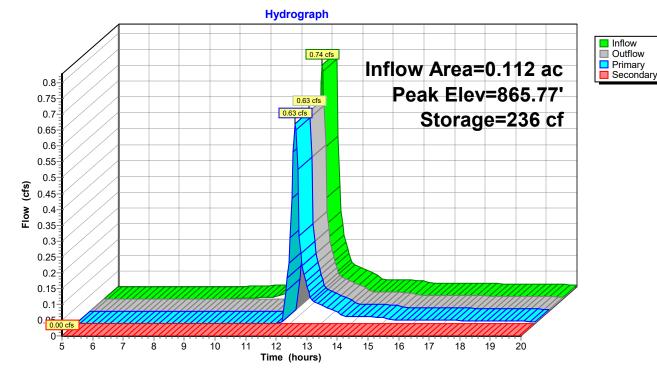


Pond 2P: SW Biofilter #1

## Summary for Pond 3P: SE Biofilter #2

Inflow Area =	0.112 ac, 46.43% Impervious, Inflow De	epth > 3.59" for 100-Year event
Inflow =	0.74 cfs @ 12.13 hrs, Volume=	0.034 af
Outflow =	0.63 cfs @ 12.17 hrs, Volume=	0.030 af, Atten= 15%, Lag= 2.2 min
Primary =	0.63 cfs @ 12.17 hrs, Volume=	0.030 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 865.77' @ 12.17 hrs Surf.Area= 880 sf Storage= 236 cf


Plug-Flow detention time= 45.7 min calculated for 0.030 af (90% of inflow) Center-of-Mass det. time= 14.2 min (790.5 - 776.3)

Volume	Invert	Avail.Stor	age Stor	rage Description
#1	864.00'	14		stom Stage Data (Prismatic) Listed below (Recalc)
#2	865.00'	23	8 cf Cus	) cf Overall x 33.0% Voids stom Stage Data (Prismatic) Listed below (Recalc) ) cf Overall x 27.0% Voids
#3	867.00'	98		stom Stage Data (Prismatic) Listed below (Recalc)
		1,36	8 cf Tota	al Available Storage
Elevatio		f.Area	Inc.Stor	-
(fee			(cubic-feet	
864.0		440		0 0
865.0	0	440	44	440
Elevatio	n Surl	f.Area	Inc.Store	re Cum.Store
(fee	t) (	(sq-ft)	(cubic-feet	et) (cubic-feet)
865.0	0	440		0 0
867.0	0	440	88	80 880
Elevatio	n Surl	f.Area	Inc.Store	re Cum.Store
(fee	t) (	(sq-ft)	(cubic-feet	et) (cubic-feet)
867.0	0	440		0 0
868.0	0	1,530	98	985 985
Device	Routing	Invert	Outlet De	evices
#1	Primary	865.00'		ound Culvert
	i inner y	000.00		CPP, projecting, no headwall, Ke= 0.900
				itlet Invert= 865.00' / 864.68' S= 0.0097 '/' Cc= 0.900
				Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Device 1	865.00'		<b>e</b> 6.000" Diameter, C= 0.600
				ng Tube, Hazen-Williams C= 130
	During 4			utlet Elev. = 865.00' / 865.00'
#3	Device 1	868.00'		<b>riz. Orifice/Grate</b> C= 0.600 o weir flow at low heads
#4	Secondary	867.85'		g x 5.0' breadth Broad-Crested Rectangular Weir
<i>"</i> -	Cecondary	007.00		et) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
				0 3.50 4.00 4.50 5.00 5.50
			Coef. (En	nglish) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65

2.65 2.67 2.66 2.68 2.70 2.74 2.79 2.88

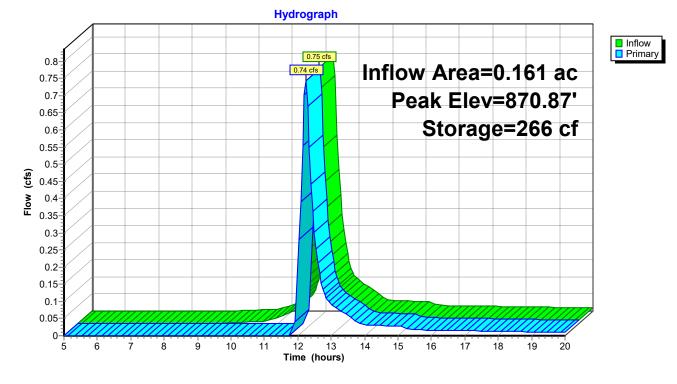
Primary OutFlow Max=0.62 cfs @ 12.17 hrs HW=865.74' (Free Discharge) 1=Culvert (Passes 0.62 cfs of 1.45 cfs potential flow) 2=Drain Tile (Tube Controls 0.62 cfs @ 3.16 fps) 3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=864.00' (Free Discharge) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)



## Pond 3P: SE Biofilter #2

## Summary for Pond 5P: N Rain Garden

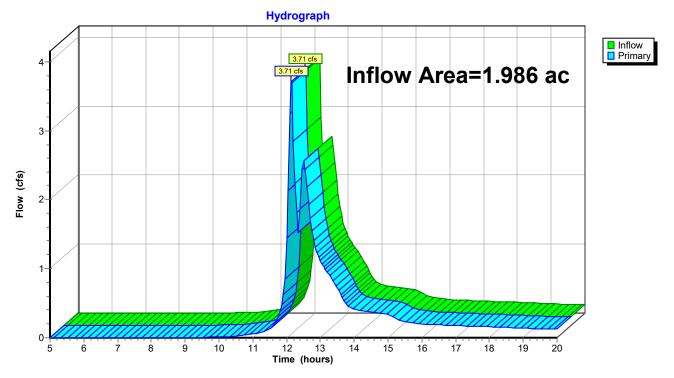

Inflow Area =	0.161 ac, 40.99% Impervious,	Inflow Depth > 3.39" for 100-Year event
Inflow =	0.75 cfs @ 12.23 hrs, Volume	= 0.045 af
Outflow =	0.74 cfs @ 12.24 hrs, Volume	= 0.040 af, Atten= 0%, Lag= 1.0 min
Primary =	0.74 cfs @ 12.24 hrs, Volume	= 0.040 af
-	_	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 870.87' @ 12.24 hrs Surf.Area= 454 sf Storage= 266 cf

Plug-Flow detention time= 45.9 min calculated for 0.040 af (89% of inflow) Center-of-Mass det. time= 13.4 min (799.2 - 785.8)

Volume	Inv	ert Avail.Sto	orage Storage	Storage Description			
#1	870.0	00' 3	30 cf Custom	Custom Stage Data (Prismatic) Listed below (Recalc)			
Elevatio (fee 870.0 871.0	et) 00	Surf.Area (sq-ft) 160 500	Inc.Store (cubic-feet) 0 330	Cum.Store (cubic-feet) 0 330			
Device	Routing	Invert	Outlet Devices	5			
#1	Primary	870.75'	Head (feet) 0 2.50 3.00 3.5 Coef. (English	.20 0.40 0.60 50 4.00 4.50 5	69 2.68 2.67 2.67 2.65 2.66 2.66		

Primary OutFlow Max=0.74 cfs @ 12.24 hrs HW=870.86' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 0.74 cfs @ 0.80 fps)



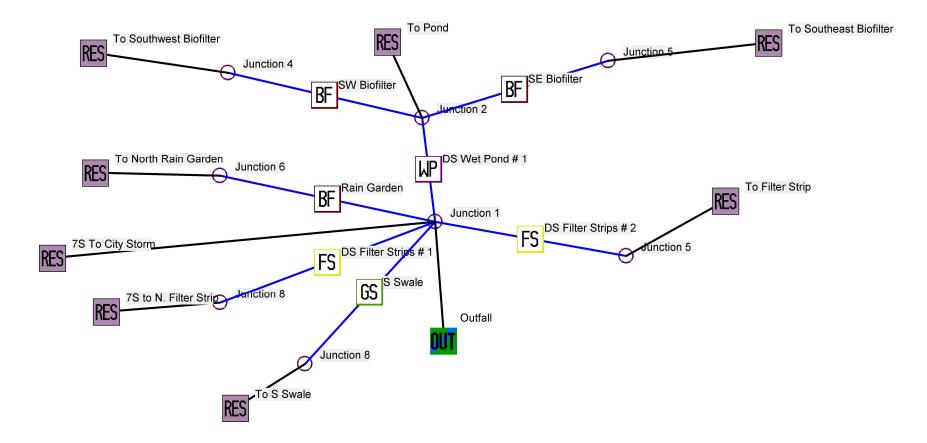

## Pond 5P: N Rain Garden

### Summary for Link 6L: Site Total

Inflow Area	a =	1.986 ac, 39.68% Impervious, Inflow Depth > 2.14" for 100-Year event
Inflow	=	3.71 cfs @ 12.14 hrs, Volume= 0.354 af
Primary	=	3.71 cfs $\overline{@}$ 12.14 hrs, Volume= 0.354 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

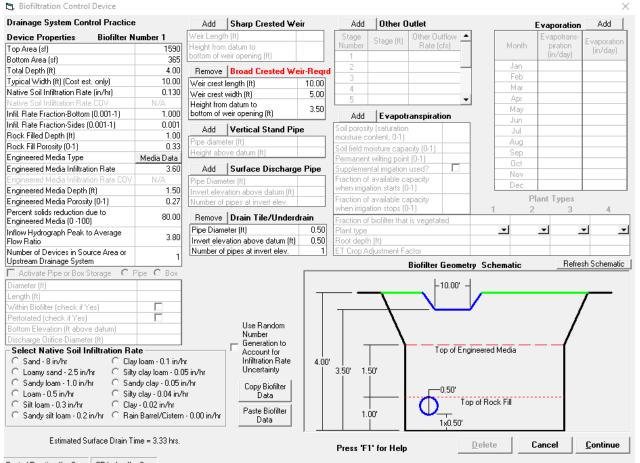



### Link 6L: Site Total

# Appendix E TSS Reduction Calculations

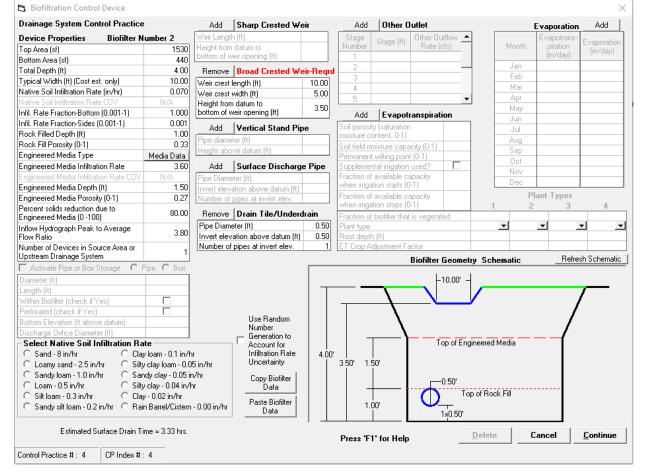


PARISH SURVEY & ENGINEERING

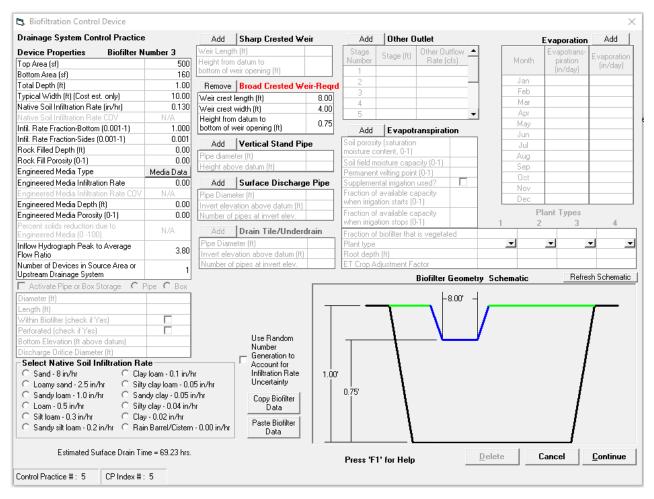

122 Wisconsin Street | West Bend, WI 53095 www.parishse.com



### Net Detention Control Device


		Channel	1	Cumulative 🔺						
rainage System Control Practice		Stage	Area	Volume	Weir Lengtl	n (ft)			Evaporation	Water
		(ft)	(acres)	(ac-ft)	Height from			Month	(in/day)	Withdraw Rate
	0	0.00	0.0000	0.000	bottom of w	eir opening (ft)				(ac-ft/day)
	1	0.01	0.0008	0.000	Add	V-Notch Weir		Jan	0.00	0.00
	2	1.00	0.0038	0.002		(<180 degrees)		Feb	0.00	0.00
	3	2.00	0.0087	0.009	Height from			Mar	0.00	0.00
Initial Stage Elevation (ft): 3.50	4	2.50	0.0119	0.014		eir opening (ft)		Apr	0.00	0.00
	5	3.00	0.0334	0.025		/-Notch weirs		May	0.00	0.00
Maximum Inflow into Pond (cfs)	6	3.50	0.0700	0.051				Jun	0.00	0.00
nter 0 or leave blank for no limit:	7	4.00	0.0845	0.089		Orifice Set 1		Jul	0.00	0.00
	8	5.00	0.1148	0.189	Orifice Diam		0.12	Aug	0.00	0.00
	9	6.00	0.1469	0.320		tion above datum (ft)	3.50	Sep	0.00	0.00
Copy Pond Data Paste Pond Data	10	7.00	0.1786	0.483	Number of a	orifices in set	1	Oct	0.00	0.00
	11				Add	Orifice Set 2		Nov	0.00	0.00
	12				Orifice Diam			Dec	0.00	0.00
Create Pond Refresh	13					tion above datum (ft)			Add	Add
Stage-Area Values Schematic	14				Number of a	1.1		Chan	Natural	Other 🖌
	15					,		Stage (ft)	Seepage Rat	
Enter fraction (greater 0.00 than 0) that you want to	16				Add	Orifice Set 3			(in/hr)	Rate (cfs)
modify all pond areas by	17			•	Orifice Diam	eter (ft)		0.00	0.1	
and then select 'Modify Modify Pond		Deceler	ilate Cumulat	i ya Maluma	Invert eleval	ion above datum (ft)		0.01	0.1	
Pond Areas' button Areas		necalcu	liate Cumulat	ive volume	Number of o	rifices in set		1.00	0.1	
Only Vertical Dimension to Relative Scale					Add	Stone Weeper		2.00	0.0	
			⊢ 20.0	0'				2.50	0.1	
			<b>−</b> ∖			ttom of weeper (ft)		3.00	0.1	
	4.1	<u> </u>	<u> </u>			e slope (_H:1V) de slope (_H:1V)		2.50		
	<b>-</b> م	ר-ר				n side slope (_H:1V)		Remov	/eBroad Cr (Require)	ested Weir
						ow path length			t length (ft)	20.00
					at top of we				t width (ft)	10.00
			ç.	5.00'		:k diameter (ft)			m datum to	
		5.50'		1		m bottom to top			weir opening (I	ft) 6.00
3.50'					of weeper (f					
					Height from	datum to		Add	Seepage	Basin
					bottom of w	eeper (ft)			rate (in/hr)	
	-				Bemove	Vertical Stand Pi	ne	Width of (		
					Pipe diamet		4.00		device (ft)	
	-		1		Height abov		4.00		vation of seepa t above datum	
Delete Pond Cancel	<u>C</u>	ontinue	Press	s 'F1' for Help	[Height abov	e datum (it)	5.50	Dasirrine	Pump	6.0

### Southwest Biofilter #1




Control Practice #: 3 CP Index #: 3

### Southeast Biofilter #2



### N. Rain Garden



Data file name: W:\Projects\ES-10-23\Stormwater\Proposed Option 2.mdb WinSLAMM Version 10.4.1 Rain file name: C:\WinSLAMM Files\Rain Files\WI Milwaukee 69.RAN Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI_SL06 Dec06.rsvx Residential Street Delivery file name: C:\WinSLAMM Files\WI_Res and Other Urban Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI_Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Apply Street Delivery Files to Adjust the After Event Load Street Dirt Mass Balance: False Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI GEO03.ppdx Source Area PSD and Peak to Average Flow Ratio File: C:\WinSLAMM Files\NURP Source Area PSD Files.csv Cost Data file name: Seed for random number generator: -42 Study period starting date: 01/05/69 Study period ending date: 12/31/69 Start of Winter Season: 12/15 End of Winter Season: 03/28 Date: 11-22-2024 Time: 09:28:25 Site information:

Pre-Development Area Description	Pre-Developmen	t Area (ac)	Pre-Development CN
1.828	66		
Total Area (ac)/Composite CN	1.828	66	

LU# 1 - Residential: To Pond Total area (ac): 0.956

1 - Roofs 1: 0.208 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

25 - Driveways 1: 0.207 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

26 - Driveways 2: 0.050 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

31 - Sidewalks 1: 0.011 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

45 - Large Landscaped Areas 1: 0.432 ac. Normal Sandy Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

70 - Water Body Areas: 0.048 ac. Source Area PSD File:

LU# 2 - Residential: 7S To City Storm Total area (ac): 0.132

25 - Driveways 1: 0.055 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

31 - Sidewalks 1: 0.004 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

45 - Large Landscaped Areas 1: 0.073 ac. Normal Sandy Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

LU# 3 - Residential: To Southwest Biofilter Total area (ac): 0.112

1 - Roofs 1: 0.053 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

45 - Large Landscaped Areas 1: 0.059 ac. Normal Sandy Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

LU# 4 - Residential: To Filter Strip Total area (ac): 0.253

31 - Sidewalks 1: 0.003 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 45 - Large Landscaped Areas 1: 0.250 ac. Normal Sandy Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

LU# 5 - Residential: To Southeast Biofilter Total area (ac): 0.112

1 - Roofs 1: 0.053 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

45 - Large Landscaped Areas 1: 0.059 ac. Normal Sandy Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

LU# 6 - Residential: To North Rain Garden Total area (ac): 0.161

1 - Roofs 1: 0.063 ac. Pitched Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

31 - Sidewalks 1: 0.003 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 45 - Large Landscaped Areas 1: 0.095 ac. Normal Sandy Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

LU# 7 - Residential: To S Swale Total area (ac): 0.118

45 - Large Landscaped Areas 1: 0.118 ac. Normal Silty Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

LU# 8 - Residential: 7S to N. Filter Strip Total area (ac): 0.142

25 - Driveways 1: 0.031 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 45 - Large Landscaped Areas 1: 0.111 ac. Normal Sandy Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

Control Practice 1: Wet Detention Pond CP# 1 (DS) - DS Wet Pond # 1 Particle Size Distribution file name: Not needed - calculated by program Initial stage elevation (ft): 3.5 Peak to Average Flow Ratio: 3.8 Maximum flow allowed into pond (cfs): No maximum value entered Outlet Characteristics: Outlet type: Orifice 1

Juliel type: Onnce I

- 1. Orifice diameter (ft): 0.12
- 2. Number of orifices: 1
- 3. Invert elevation above datum (ft): 3.5

Outlet type: Broad Crested Weir

1. Weir crest length (ft): 20

- 2. Weir crest width (ft): 10
- 3. Height from datum to bottom of weir opening: 6

Outlet type: Vertical Stand Pipe

1. Stand pipe diameter (ft): 4

2. Stand pipe height above datum (ft): 5.5

Pond stage and surface area

Entry	Stage	Pond Area	Natural Seepa	age Other Outflow
Numb	er (ft)	(acres)	(in/hr)	(cfs)
0	0.00	0.0000	0.00	0.00
1	0.01	0.0008	0.00	0.00
2	1.00	0.0038	0.00	0.00
3	2.00	0.0087	0.00	0.00
4	2.50	0.0119	0.00	0.00
5	3.00	0.0334	0.00	0.00
6	3.50	0.0700	0.00	0.00
7	4.00	0.0845	0.00	0.00
8	5.00	0.1148	0.00	0.00
9	6.00	0.1469	0.00	0.00
10	7.00	0.1786	0.00	0.00

Control Practice 2: Filter Strip CP# 1 (DS) - DS Filter Strips # 2 Total drainage area (acres)= 0.253 Fraction of drainage area served by filter strips (ac) = 1.00 Total filter strip width (ft) = 475.0

Effective flow length (ft) = 25 Infiltration rate (in/hr)= 0.035 Typical longitudinal slope (ft.H/ft.V) = 0.150 Typical grass height (in) = 6.0 Swale retardance factor = C Use stochastic analysis to determine infiltration rate: False Infiltration rate coeficient of variation (COV) = 0.00 Particle size distribution file name: Not needed - calculated by program

Surface Clogging Load (lbs/sf) = 3.50

Control Practice 3: Biofilter CP# 1 (DS) - SW Biofilter

- 1. Top area (square feet) = 1590
- 2. Bottom aea (square feet) = 365
- 3. Depth (ft): 4
- 4. Biofilter width (ft) for Cost Purposes Only: 10
- 5. Infiltration rate (in/hr) = 0.13
- 6. Random infiltration rate generation? No
- 7. Infiltration rate fraction (side): 0.001
- 8. Infiltration rate fraction (bottom): 1
- 9. Depth of biofilter that is rock filled (ft) 1

- 10. Porosity of rock filled volume = 0.33
- 11. Engineered soil infiltration rate: 3.6
- 12. Engineered soil depth (ft) = 1.5
- 13. Engineered soil porosity = 0.27
- 14. Percent solids reduction due to flow through engineered soil = 80
- 15. Biofilter peak to average flow ratio = 3.8
- 16. Number of biofiltration control devices = 1
- 17. Particle size distribution file: Not needed calculated by program
- 18. Initial water surface elevation (ft): 0
- Soil Data Soil Type Fraction in Eng. Soil
- User-Defined Soil Type 1.000
- Biofilter Outlet/Discharge Characteristics:
  - Outlet type: Broad Crested Weir
    - 1. Weir crest length (ft): 10
    - 2. Weir crest width (ft): 5
  - 3. Height of datum to bottom of weir opening: 3.5
  - Outlet type: Drain Tile/Underdrain
    - 1. Underdrain outlet diameter (ft): 0.5
    - 2. Invert elevation above datum (ft): 0.5
    - 3. Number of underdrain outlets: 1

Control Practice 4: Biofilter CP# 2 (DS) - SE Biofilter

- 1. Top area (square feet) = 1530
- 2. Bottom aea (square feet) = 440
- 3. Depth (ft): 4
- 4. Biofilter width (ft) for Cost Purposes Only: 10
- 5. Infiltration rate (in/hr) = 0.07
- 6. Random infiltration rate generation? No
- 7. Infiltration rate fraction (side): 0.001
- 8. Infiltration rate fraction (bottom): 1
- 9. Depth of biofilter that is rock filled (ft) 1
- 10. Porosity of rock filled volume = 0.33
- 11. Engineered soil infiltration rate: 3.6
- 12. Engineered soil depth (ft) = 1.5
- 13. Engineered soil porosity = 0.27
- 14. Percent solids reduction due to flow through engineered soil = 80
- 15. Biofilter peak to average flow ratio = 3.8
- 16. Number of biofiltration control devices = 1
- 17. Particle size distribution file: Not needed calculated by program
- 18. Initial water surface elevation (ft): 0
- Soil Data Soil Type Fraction in Eng. Soil
- User-Defined Soil Type 1.000
- Biofilter Outlet/Discharge Characteristics:
  - Outlet type: Broad Crested Weir
    - 1. Weir crest length (ft): 10
    - 2. Weir crest width (ft): 5
    - 3. Height of datum to bottom of weir opening: 3.5

Outlet type: Drain Tile/Underdrain

- 1. Underdrain outlet diameter (ft): 0.5
- 2. Invert elevation above datum (ft): 0.5
- 3. Number of underdrain outlets: 1

Control Practice 5: Biofilter CP# 3 (DS) - Rain Garden

- 1. Top area (square feet) = 500
- 2. Bottom aea (square feet) = 160
- 3. Depth (ft): 1
- 4. Biofilter width (ft) for Cost Purposes Only: 10
- 5. Infiltration rate (in/hr) = 0.13
- 6. Random infiltration rate generation? No
- 7. Infiltration rate fraction (side): 0.001
- 8. Infiltration rate fraction (bottom): 1
- 9. Depth of biofilter that is rock filled (ft) 0
- 10. Porosity of rock filled volume = 0
- 11. Engineered soil infiltration rate: 0
- 12. Engineered soil depth (ft) = 0
- 13. Engineered soil porosity = 0
- 14. Percent solids reduction due to flow through engineered soil = 0
- 15. Biofilter peak to average flow ratio = 3.8
- 16. Number of biofiltration control devices = 1
- 17. Particle size distribution file: Not needed calculated by program
- 18. Initial water surface elevation (ft): 0
- Soil Data Soil Type Fraction in Eng. Soil

Biofilter Outlet/Discharge Characteristics:

Outlet type: Broad Crested Weir

- 1. Weir crest length (ft): 8
- 2. Weir crest width (ft): 4
- 3. Height of datum to bottom of weir opening: 0.75
- Control Practice 6: Grass Swale CP# 1 (DS) S Swale
- Total drainage area (acres)= 0.118
- Fraction of drainage area served by swales (ac) = 1.00
- Swale density (ft/ac) = 3145.04

Total swale length (ft) = 412

Average swale length to outlet (ft)= 412

Typical bottom width (ft) = 10.0

Typical swale side slope  $(_H:1V) = 3.0$ 

Typical longitudinal slope (ft.H/ft.V) = 0.014

- Swale retardance factor: D
- Typical grass height (in) = 10.0

Swale dynamic infiltration rate (in/hr)= 0.065

Typical swale depth (ft) for cost analysis (optional) = 0.0

Particle size distribution file name: Not needed - calculated by program

Use total swale length instead of swale density for infiltration calculations: True

Control Practice 7: Filter Strip CP# 2 (DS) - DS Filter Strips # 1 Total drainage area (acres) = 0.142 Fraction of drainage area served by filter strips (ac) = 1.00 Total filter strip width (ft) = 160.0 Effective flow length (ft) = 22 Infiltration rate (in/hr) = 0.035 Typical longitudinal slope (ft.H/ft.V) = 0.045 Typical grass height (in) = 6.0 Swale retardance factor = B Use stochastic analysis to determine infiltration rate: False Infiltration rate coeficient of variation (COV) = 0.00 Particle size distribution file name: Not needed - calculated by program Surface Clogging Load (lbs/sf) = 3.50 SLAMM for Windows Version 10.4.1 (c) Copyright Robert Pitt and John Voorhees 2019, All Rights Reserved

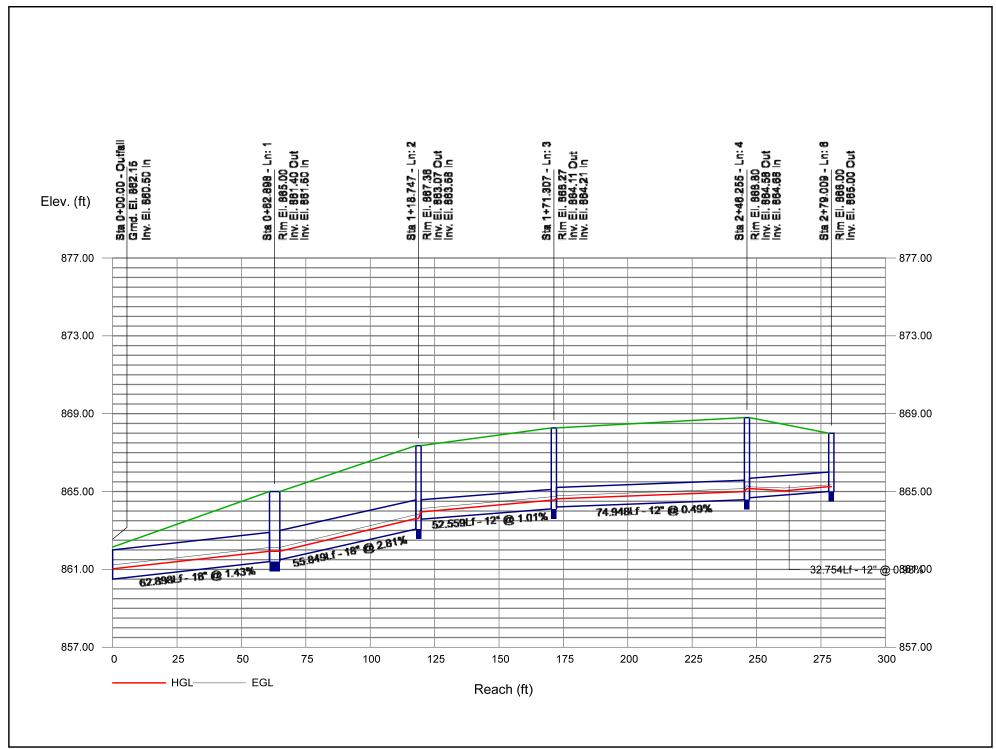
Data file name: W:\Projects\ES-10-23\Stormwater\Proposed Option 2.mdb WinSLAMM Version 10.4.1 Rain file name: C:\WinSLAMM Files\Rain Files\WI Milwaukee 69.RAN Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI_SL06 Dec06.rsvx Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI GEO03.ppdx Residential Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI_Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Apply Street Delivery Files to Adjust the After Event Load Street Dirt Mass Balance: False Source Area PSD and Peak to Average Flow Ratio File: C:\WinSLAMM Files\NURP Source Area PSD Files.csv Cost Data file name: Seed for random number generator: -42 Study period starting date: 01/05/69 Study period ending date: 12/31/69 Start of Winter Season: 12/15 End of Winter Season: 03/28 Model Run Start Date: 01/05/69 Model Run End Date: 12/31/69 Date of run: 11-22-2024 Time of run: 09:25:53 Total Area Modeled (acres): 1.986 Years in Model Run: 0.99 .... Dentionalist . .

	Runoff Volume (cu ft)	Percent Runoff Volume Reduction	Particulate Solids Conc. (mg/L)	Particulate Solids Yield (Ibs)	Percent Particulate Solids Reduction
Total of all Land Uses without Controls: Outfall Total with Controls:	72706 58734	- 19.22%	83.12 20.52	377.3 75.24	- 80.06%
Annualized Total After Outfall Controls:	59550			76.29	

## Appendix F

## Storm Sewer Sizing Calculations

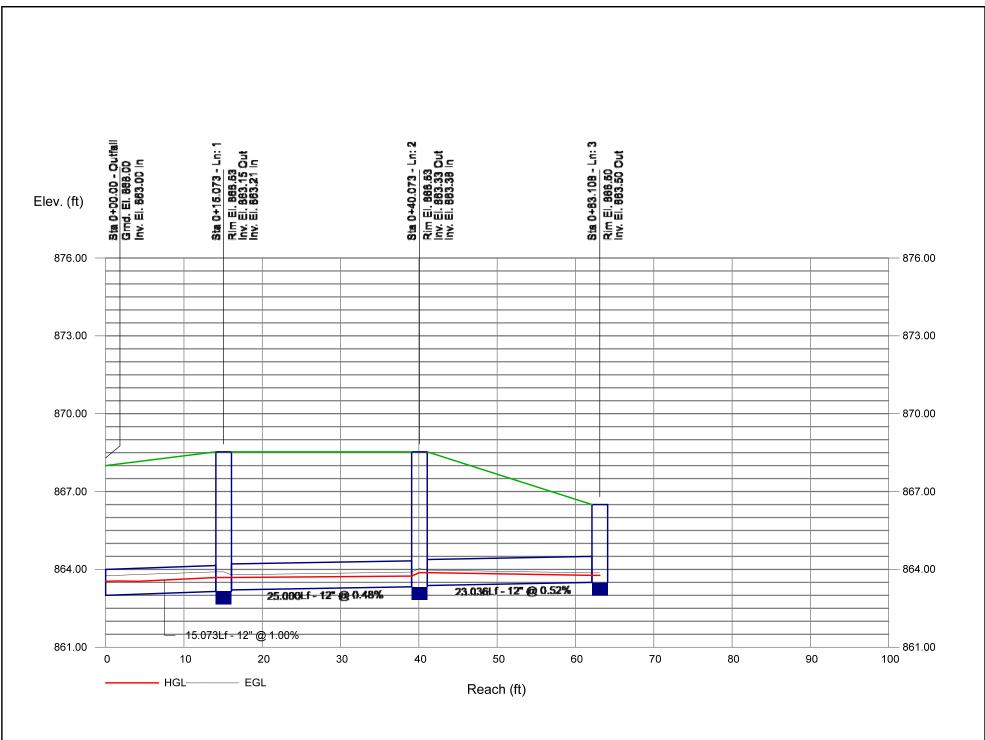



PARISH SURVEY & ENGINEERING

122 Wisconsin Street | West Bend, WI 53095 www.parishse.com

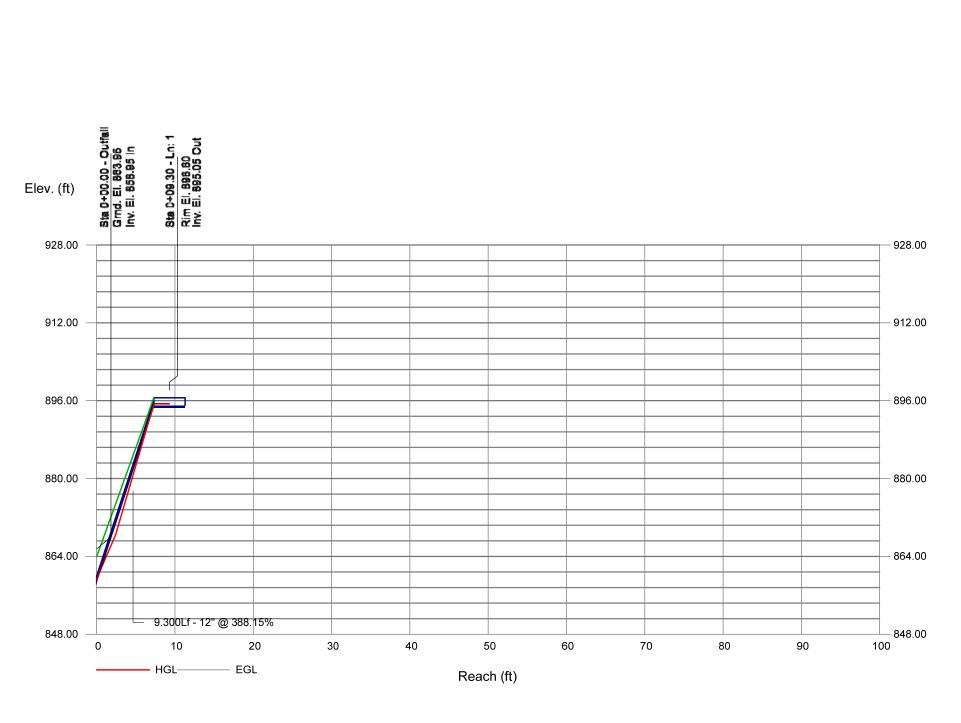
Line	To Line	Line Length	Incr. Area	Total Area	Runoff Coeff.	Incr C x A	Total C x A	Inlet Time	Time Conc	Rnfal Int	Total Runoff	Adnl Flow	Total Flow	Capac Full	Veloc	Pipe Size	Pipe Slope
		(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/ hr)	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ s)	(in)	(%)
1	Outfall	62.898	0.00	0.71	0.50	0.00	0.36	6.0	9.4	5.6	2.00	0.00	2.00	13.61	3.57	18	1.43
2	1	55.849	0.33	0.71	0.50	0.17	0.36	6.0	8.6	5.8	2.07	0.00	2.07	19.07	4.25	18	2.81
3	2	52.559	0.07	0.38	0.50	0.04	0.19	6.0	8.1	6.0	1.14	0.00	1.14	3.87	3.81	12	1.01
4	3	74.948	0.09	0.31	0.50	0.05	0.16	6.0	7.1	6.3	0.98	0.00	0.98	2.71	3.16	12	0.49
5	4	15.833	0.11	0.11	0.50	0.06	0.06	6.0	6.0	6.8	0.37	0.00	0.37	5.48	1.71	12	2.02
6	4	32.754	0.11	0.11	0.50	0.06	0.06	6.0	6.0	6.8	0.37	0.00	0.37	3.81	1.71	12	0.98

	Up	Dn	HGL Up	Gmd/ Rim Dn	Grnd/ Rim Up	Line ID
(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
860.50	861.40	861.03	861.93	862.15	865.00	Pipe - (18)
861.50	863.07	861.93	863.61	865.00	867.36	Pipe - (17)
863.58	864.11	863.95	864.56	867.36	868.27	Pipe - (16) (1)
864.21	864.58	864.63	865.00	868.27	868.80	Pipe - (20)
864.68	865.00	865.15	865.25	868.80	868.00	Pipe - (4)
864.68	865.00	865.15	865.25	868.80	868.00	Pipe - (21)
	860.50 861.50 863.58 864.21 864.68	860.50         861.40           861.50         863.07           863.58         864.11           864.21         864.58           864.68         865.00	860.50861.40861.03861.50863.07861.93863.58864.11863.95864.21864.58864.63864.68865.00865.15	860.50861.40861.03861.93861.50863.07861.93863.61863.58864.11863.95864.56864.21864.58864.63865.00864.68865.00865.15865.25	860.50         861.40         861.03         861.93         862.15           861.50         863.07         861.93         863.61         865.00           863.58         864.11         863.95         864.56         867.36           864.21         864.58         864.63         865.00         868.27           864.68         865.00         865.15         865.25         868.80	860.50         861.40         861.03         861.93         862.15         865.00           861.50         863.07         861.93         863.61         865.00         867.36           863.58         864.11         863.95         864.56         867.36         868.27           864.21         864.58         864.63         865.00         868.27         868.80           864.68         865.00         865.15         865.25         868.80         868.00


## **Storm Sewer Profile**



Line	To Line	Line Length	Incr. Area	Total Area	Runoff Coeff.	Incr C x A	Total C x A	Inlet Time	Time Conc	Rnfal Int	Total Runoff	Adnl Flow	Total Flow	Capac Full	Veloc	Pipe Size	Pipe Slope
		(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/ hr)	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ s)	(in)	(%)
1	Outfall	15.073	0.21	0.68	0.50	0.11	0.25	6.0	7.0	6.4	1.61	0.00	1.61	3.85	3.73	12	1.00
2	1	25.000	0.17	0.47	0.50	0.09	0.15	6.0	6.7	6.5	0.96	0.00	0.96	2.67	2.86	12	0.48
3	2	23.036	0.30	0.30	0.21	0.06	0.06	6.0	6.0	6.8	0.43	0.00	0.43	2.78	1.80	12	0.52


Line	Inv Elev Dn	Inv Elev Up	HGL Dn	HGL Up	Gmd/ Rim Dn	Gmd/ Rim Up	Line ID
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	863.00	863.15	863.54	863.69	0.00	868.53	Pipe - (75)
2	863.21	863.33	863.69	863.74	868.53	868.53	Pipe - (76)
3	863.38	863.50	863.88	863.77	868.53	866.50	Pipe - (10)

## **Storm Sewer Profile**



Line	To Line	Line Length	Incr. Area	Total Area	Runoff Coeff.	Incr C x A	Total C x A	Inlet Time	Time Conc	Rnfal Int	Total Runoff	Adnl Flow	Total Flow	Capac Full	Veloc	Pipe Size	Pipe Slope
		(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/ hr)	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ s)	(in)	(%)
1	Outfall	9.300	0.15	0.15	0.50	0.08	0.08	6.0	6.0	6.8	0.51	0.00	0.51	76.01	2.60	12	388.15

Line	Inv Elev Dn	Inv Elev Up	HGL Dn	HGL Up	Gmd/ Rim Dn	Grnd/ Rim Up	Line ID
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	858.95	895.05	859.25	895.35	0.00	896.60	Pipe - (53)



## Appendix G

## Stormwater Maintenance Agreements



PARISH SURVEY & ENGINEERING

122 Wisconsin Street | West Bend, WI 53095 www.parishse.com St. Paul Rental Properties LLC as "Owner" of the property described below, in accordance with Chapter 32 City of Waukesha Storm Water Management and Erosion Control, agrees to install and maintain storm water management practice(s) on the subject property in accordance with approved plans and Storm Water Management Plan conditions. The owner further agrees to the terms stated in this document to ensure that the storm water management practice(s) continues serving the intended functions in perpetuity. This Agreement includes the following exhibits:

Exhibit A: Legal Description of the real estate for which this Agreement applies ("Property").
Exhibit B: Location Map(s) – shows an accurate location of each storm water management practice affected by this Agreement.

**Exhibit C:** <u>Maintenance Plan</u> – prescribes those activities that must be carried out to maintain compliance with this Agreement.

<u>Note</u>: After construction verification has been accepted by the City of Waukesha, for all planned storm water management practices, an <u>addendum(s)</u> to this agreement shall be recorded by the Owner showing design and construction details. The addendum(s) may contain several additional exhibits, including certification of City of Waukesha of Storm Water and Erosion Control Permit termination, as described below.

Through this Agreement, the Owner hereby subjects the Property to the following covenants, conditions and restrictions:

- 1. The Owner shall be responsible for the routine and extraordinary maintenance and repair of the storm water management practice(s) and drainage easements identified in Exhibit B until Storm Water and Erosion Control Permit termination by the City of Waukesha in accordance with Chapter 32 of the City Code of Ordinances.
- 2. After Storm Water and Erosion Control Permit termination under 1., the current Owner(s) shall be solely responsible for maintenance and repair of the storm water management practices and drainage easements in accordance with the maintenance plan contained in Exhibit C.
- 3. The Owner(s) shall, at their own cost, complete inspections of the storm water management practices at the time intervals listed in Exhibit C, and conduct the inspections by a a qualified professional, file the reports with the City of Waukesha after each inspection and complete any maintenance or repair work recommended in the report. The Owner(s) shall be liable for the failure to undertake any maintenance or repairs. After the work is completed by the Contractor, the qualified professional shall verify that the work was properly completed and submit the follow-up report to the City within 30 days.
- 4. In addition, and independent of the requirements under paragraph 3 above, the City of Waukesha, or its designee, is authorized to access the property as necessary to conduct inspections of the storm water management practices or drainage easements to ascertain compliance with the intent of this Agreement and the activities prescribed in Exhibit C. The City of Waukesha may require work to be done which differs from the report described in paragraph 3 above, if the City of Waukesha reasonably concludes that such work is necessary and consistent with the intent of this agreement. Upon notification by the City of Waukesha of required maintenance or repairs, the Owner(s) shall complete the specified maintenance or repairs within a reasonable time frame determined by the City of Waukesha.
- 5. If the Owner(s) do not complete an inspection under 3. above or required maintenance or repairs under 4. above within the specified time period, the City of Waukesha is authorized, but not required, to perform the specified inspections, maintenance or repairs. In the case of an emergency situation, as determined by the City of Waukesha, no notice shall be required prior to the City of Waukesha performing emergency maintenance or repairs. The City of Waukesha may levy the costs and expenses of such inspections, maintenance or repair related actions as a special charge against the Property and collected as such in accordance with the procedures under s. 66.0627 Wis. Stats. or subch. VII of ch. 66 Wis. Stats.

Return Address: St Paul Rental Properties LLC P.O. Box 375 Waukesha, WI 53187

City of Waukesha 201 Delafield Street Waukesha, WI 53188

PIN: TBD with new CSM.

6. This Agreement shall run with the Property and be binding upon all heirs, successors and assigns. After the Owner records the addendum noted above, the City of Waukesha shall have the sole authority to modify this agreement upon a 30-day notice to the current Owner(s).

Dated this ____ day of _____, 202_.

**Owner: St. Paul Rental Properties LLC** 

Signature

Name Print

## Acknowledgements

State of Wisconsin: County of Waukesha

Personally came before me this _____ day of _____, 202_, the above named _____ to me known to be the person who executed the foregoing instrument and acknowledged the same.

Name: Notary Public, Waukesha County, WI My commission expires:______

For Certification Stamp

This document was drafted by:

McKenzie Swartwout, PE

Parish Survey & Engineering, LLC

### City of Waukesha Common Council Approval

Dated this ____ day of _____, 202_.

Shawn N. Reilly, Mayor

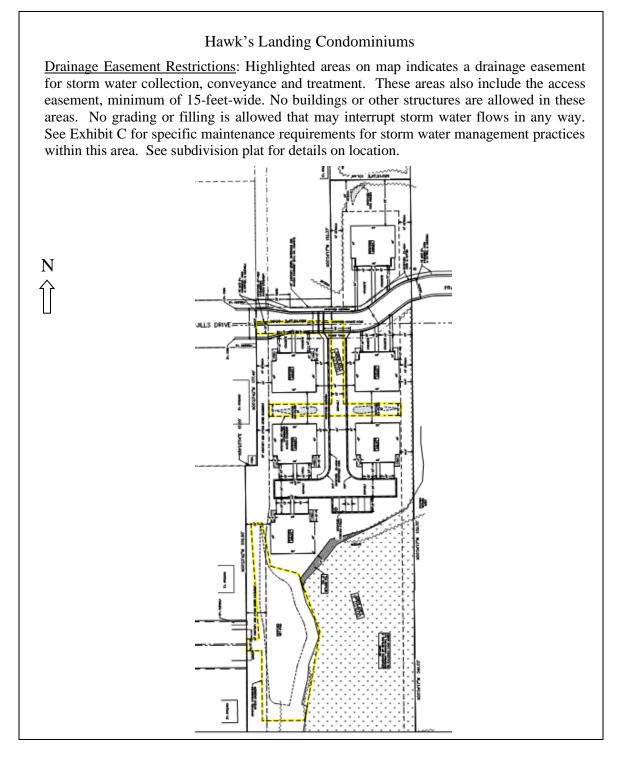
Anthony Brown, Interim City Clerk

## Acknowledgements

State of Wisconsin: County of Waukesha

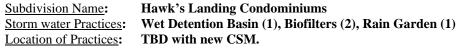
Personally came before me this _____ day of ______, 202_, the above named ______ to me known to be the person who executed the foregoing instrument and acknowledged the same.

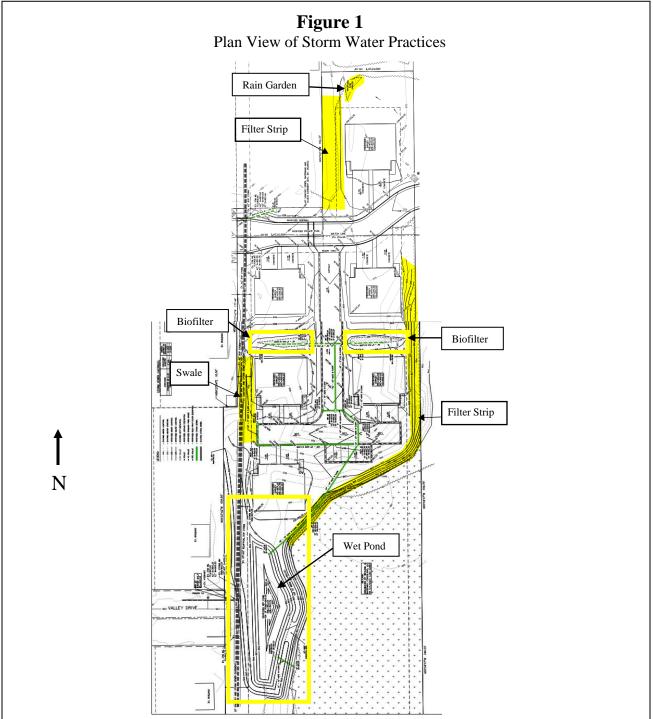
Name:


Notary Public, Waukesha County, WI My commission expires: .

.

## Exhibit A – Legal Description


The following description and reduced copy map identifies the land parcel(s) affected by this Agreement. For a larger scale view of the referenced document, contact the Waukesha County Register of Deeds office.


Project Identifier:Hawk's Landing CondominiumsAcres: 3.69Date of Recording:Arres:Safety Safety Safet



### **Exhibit B - Location Map** Storm Water Management Practices Covered by this Agreement

The storm water management practices covered by this Agreement are depicted in the reduced copy of a portion of the construction plans, as shown below. The practices include one wet detention basin, two biofilters, one rain garden, and all associated pipes, earthen berms, and other components of these practices. All of the noted storm water management practices are located within a drainage easement, as noted in Exhibit A.





## Maintenance Provisions for Stormwater BMPs

#### System Description:

Infiltration basins are designed to reduce runoff volumes from a site after development by intercepting the runoff and allowing it to slowly seep (infiltrate) into the underlying soil and groundwater. Most are designed to infiltrate the first 1/2" to 1" of runoff in an attempt to meet average annual predevelopment runoff volumes.

The stormwater BMPs have been designed to reduce peak flows by temporarily detaining runoff from larger storms and releasing it through outlet pipes or other controlled discharge devices. Pretreatment of the runoff is often provided for infiltration devises to reduce sedimentation in the basin and prevent the risk of groundwater pollution.

#### Minimum Maintenance Requirements:

#### Rain Garden & Bio-Filters

To ensure the proper function of storm water rain garden and bio-filter basins, the following list of maintenance activities are recommended:

- 1. A minimum of 70% soil cover made up of native grasses must be maintained on the basin bottom to ensure infiltration rates. Periodic burning or mowing is recommended to enhance establishment of the prairie grasses (which may take 2-3 years) and maintain the minimum native cover. To reduce competition from cool season grasses (bluegrass, fescues, quack, etc.) and other weeds:
  - For the first year, cut to a 6" height three times once each in June, July and early August. To prevent damage to the native grasses, do not mow below a 6" height. Remove excessive accumulation of clippings to avoid smothering next year's seedlings.
  - After the first year, mowing may only be needed in early June each year to help control the spread of cool season plants. The mowing should also be raised to 10-12" to avoid damage to the warm season plants.
  - Burning may also be used to manage weeds in 2-5 years intervals. Late spring burns (mid-late May) provide maximum stimulus to warm season grasses and work well to control cool season grasses. Burn when the cool season grasses are growing and the warm season plants are just barely starting to grow to get maximum control of cool season species.
  - Any major bare areas or areas taken over by nonnative species must be reseeded. To clear area of weeds and cool season grasses, treat with an herbicide that contains glysophosphate in accordance with manufacture's instructions. Ensure a firm seedbed is prepared to a depth of 3 inches (a roller is recommended). Seeding should occur in early-mid June. Seed with Big Bluestem, Indian Grass, Little Blue Stem or Switchgrass (preferably an equal mix of all four types). A companion crop of oats is recommended. Seed must be placed at a depth of 1/4 1/2" and a minimum rate of 1/4 pound per 100 square feet. If broadcast seeding by hand, drag leaf rake over soil surface after seeding. Then roll it again and cover with a light layer of mulch and staked erosion control netting to hold it in place until germination. For other planting details, see NRCS standard 342 (Critical Area Planting).
- 2. Invasive plant and animal species shall be managed in compliance with Wisconsin Administrative Code Chapter NR 40. This may require eradication of invasive species in some cases.
- 3. The basin and all components (grass swales, forebay, inlets, outlets, etc.) should be inspected after each heavy rain, but at a minimum of once per year. If the basin is not draining properly (within 72 hours), further inspection may be required by persons with expertise in storm water management and/or soils.
  - If soil testing shows that the soil surface has become crusted, sealed or compacted, some deep tillage should be performed. Deep tillage will cut through the underlying soils at a 2-3 foot depth, loosening the soil and improving infiltration rates, with minimal disturbance of the surface vegetation. Types of tillage equipment that can be used include a subsoiler or straight, narrow-shanked chisel plow.

- If sedimentation is determined to be causing the failure, the accumulated sediment must be removed and the area reseeded in accordance with the notes above.
- If inspection of the monitoring well shows that groundwater is regularly near the surface, additional design features may need to be considered, such as subsurface drainage or conversion to a wetland treatment system.
- If the washed stone trench has become clogged, the stone and possibly the soil immediately around the stone must be replaced.
- 4. All outlet pipes, stone trenches and other flow control devices must be kept free of debris. Any blockage must be removed immediately.
- 5. Any eroding areas must be repaired immediately to prevent premature sediment build-up in the system. Erosion matting is recommended for repairing grassed areas.
- 6. Heavy equipment and vehicles must be kept off of the bottom and side slopes of infiltration basins to prevent soil compaction. Soil compaction will reduce infiltration rates and may cause failure of the basin, resulting in ponding and possible growth of wetland plants.
- 7. No trees are to be planted or allowed to grow on the earthen berms of the bottom of the basin. On the berms, tree root systems can reduce soil compaction and cause berm failure. On the basin bottom, trees may shade out the native grasses. The basin must be inspected annually and any woody vegetation removed.
- 8. Grass swales leading to the basin shall be preserved to allow free flowing of surface runoff in accordance with approved grading plans. No buildings or other structures are allowed in these areas. No grading or filling is allowed that may interrupt flows in any way.
- 9. If floating algae or weed growth becomes a nuisance in the forebay (decay odors, etc.), it must be removed and deposited where it cannot drain back into the basin or forebay. Removal of the vegetation from the water reduces regrowth the following season (by harvesting the nutrients). Wetland vegetation must be maintained along the waters edge for safety and pollutant removal purposes.
- 10. When sediment in the forebay has accumulated to an elevation of three feet below the outlet elevation, it must be removed (refer to figure). All removed sediment must be placed in an appropriate upland disposal site and stabilized (grass cover) to prevent sediment from washing back into the basin. Failure to remove sediment from the forebays will cause resuspension of previously trapped sediments and increase deposition in the infiltration basin.
- 11. No grading or filling of the basin or berms other than for sediment removal is allowed.
- 12. Periodic mowing of the grass swales will encourage rigorous grass cover and allow better inspections for erosion. Waiting until after August 1 will avoid disturbing nesting wildlife. Mowing around forebay may attract nuisance populations of geese to the property and is not necessary or recommended.
- 13. Any other repair or maintenance needed to ensure the continued function of the infiltration basin as ordered by the City of Waukesha under the provisions listed on page 1 of this Agreement.
- 14. The titleholder(s) or their designee must document all inspections as specified above. Documentation shall include as a minimum: (a) Inspectors Name, Address and Telephone Number, (b) Date of Inspections, (c) Condition Report of the Storm Water Management Practice, (d) Corrective Actions to be Taken and Time Frame for Completion, (e) Follow-up Documentation after Completion of the Maintenance Activities. All documentation is to be delivered to the attention of the City Engineer at the City of Waukesha Engineering Department on January 10th and July 10th each year.

#### Wet Pond

All components of the stormwater management system shall be inspected at least semiannually in early spring and early autumn or more frequently as described below. Repairs will be made whenever the performance of the system is compromised as described below.

- 1. Vegetation
  - Turf along the side slopes and top of containment berms for the detention pond shall be watered as needed during first growing season.

- Woody vegetation (trees and shrubs) shall not be allowed to grow within the detention pond and shall be removed when discovered.
- After initial establishment of vegetation, any area in excess of 1 square foot where vegetation has died or is missing shall be revegetated.
- 2. Earthworks
  - Side slope areas of the detention pond shall be inspected for occurrences of erosion and slumping of bank material. Evidences of failure will require regrading and stabilization.
- 3. Inlet and outlet structures.
  - These types of structures shall be inspected monthly for obstructions that may reduce their hydraulic capacity. Structure openings should immediately be cleared of any accumulated debris. Debris should be properly disposed of outside of stormwater storage areas. Evidence of structural or foundation material failure should be repaired immediately.
- 4. Trash and Debris
  - The stormwater pond shall be inspected monthly for trash and debris. Trash and debris shall be properly disposed of outside of stormwater storage areas
- 5. Pond Storage Volume
  - The owner shall complete an 'as-built' survey of the pond at the time that the site is substantially stabilized. The survey shall be sufficient to determine the as-built volume of the pond permanent pool and live storage areas. Additionally, the survey shall identify the pond average bottom elevation and at least two full depth cross-sections. If the pond does not substantially conform to the approved design the pond shall be modified until it conforms to the approved plan and meets the approval of the City engineer.
  - Every 10 years after the pond's initial construction, and any time ownership of the property where the pond is located is sold, the pond shall be surveyed in accordance with the previous paragraph. This survey shall be provided to the City engineer. If accumulated sediment has resulted in any portion of the 'sediment storage area' (those areas beyond any safety shelf) to be within three (3) feet of the normal pool elevation the pond shall be dredged to restore the original planned sediment storage volume. The City engineer shall be notified at least two weeks in advance of any scheduled dredging and shall be notified again on the day that dredging is to occur. Record of the dredging including documentation of sediment volumes removed shall be provided to the City engineer within one month of completion of dredging.
  - The City engineer may adjust the required time interval (longer or shorter) between scheduled surveys depending upon the observed rate of sediment accumulation within the pond.

The owner shall maintain records of the dates and findings of inspections of the stormwater management system and the cleaning and replacement of system components. The owner shall provide copies of all records to the City upon request.

Applications of fertilizers are prohibited for areas below the top of slope of the wet pond.