Living Word Evangelical Lutheran Church City of Waukesha, WI

Living Word Church

South end of Donald Drive City of Waukesha Waukesha County, WI

Storm Water Management Plan

Prepared By:

12660 W. NORTH AVENUE, BROOKFIELD, WI 53005 t: 262.790.1480 f: 262.790.1481 email: JPUDELKO@TRIOENG.COM

Submittal Date: March 22, 2019

TABLE OF CONTENTS

INTRODUCTION	3
OWNER	3
DESIGN REQUIREMENTS	3
ANALYSIS OVERVIEW	4
EXISTING SITE DESCRIPTION & DRAINAGE SUMMARY	5
DESCRIPTION	5
POST-DEVELOPMENT SITE DESCRIPTION & DRAINAGE SUMMARY	5
Description	5
PROPOSED DRAINAGE AREAS	5
FUTURE PHASE CONSIDERATIONS PROPOSED DRAINAGE SUMMARY	
DESCRIPTIONS & SUMMARIES OF STORM WATER PRACTICES	
WET POND P-1	6
INFILTRATION CONSIDERATIONS	7
TOTAL SITE RELEASE RATES	7
WATER QUALITY – TSS REDUCTION	7
CONCLUSION	8

APPENDICES

APPENDIX 1– Geotechnical Report
APPENDIX 2- Existing & Proposed Drainage Area Maps, Rain Garden Details
APPENDIX 3 – Hydraflow Calculations
APPENDIX 4 – WinSLAMM data
APPENDIX 5 – Storm Water Practice Maintenance Requirements
APPENDIX 6 – Storm Water Sewer Calculations

Introduction

Living Word Evangelical Lutheran Church is a proposing a new church development comprised of a single building and parking facilities. The subject property is a 7.043 acre lot, of which roughly 3.319 acres is being proposed to be developed.

The subject site is located of the west side of Saylesville Road, adjacent to Waukesha West High School. The property is currently being utilized as an agricultural farm field. The property drains north to south and discharges to an existing navigable drainage way, located at the southern tip of the property. Ultimately the storm water runoff from the site discharges to the Fox River.

The property to the west of the site is owned by Siepman Realty which is proposing to develop a subdivision, which will include a system of City roads and public utilities. The proposed Living Word Church project will propose to coordinate with the Siepmann development so future conditions mesh with the subject project. Storm water from the proposed site will continue to flow in the north to south direction, maintaining existing drainage patterns. A proposed storm water management facility will be located at the southernmost tip of the property and will discharge to the navigable drainage way maintaining the existing discharge point. Post development discharge rates from the facility will be maintained and/or reduce as compared to pre-existing conditions for the 2, 10, and 100 year storm events, meeting City requirements.

Owner

The owner and responsible entity for installation and maintenance of the storm water management practices is:

Living Word Evangelical Lutheran Church, Inc. 2712 Sussex Ln, Waukesha, WI 53188 Contact: John Borgward (262) 347-9673

Design Requirements

The following design standards have been used to develop the storm water management plan for the *Living Evangelical Lutheran Church*:

- <u>City of Waukesha Stormwater Management Ordinance</u> Chapter 32
- Wisconsin Department of Natural Resources (WDNR) Technical Standards, NR 151 and NR 216.
- Summary of design requirements:
 - <u>Peak Discharge:</u> Peak flow rates from the post-development site shall be reduced to less than the corresponding event under existing conditions for the 1, 2, 10, and 100-year storm events.
 - <u>Water Quality (Total Suspended Solids)</u>: Reduce, to the maximum extent practicable, the total suspended solids load by 80%, based on an average annual rainfall, as compared to no runoff management controls.

• <u>Infiltration</u>: Exempt for this property with clay and silt loam soils having less than a 0.6 in/hr infiltration rate above the field determined seasonal high groundwater elevations.

Analysis Overview

Existing and post development storm water runoff conditions for the Living Word Evangelical Lutheran Church Development project have been analyzed for: runoff volume, peak volume, discharge, detention area storage capacity required, outlet structures and storm sewer system requirements. The software package used for modeling and analysis was Hydraflow© 2015 Version 10.4 by Intelisolve. Hydraflow uses NRCS methods to generate runoff and pond routing hydrographs. Hydraflow's capabilities include: modeling simple or complex drainage basins, combining hydrographs to determine runoff and storage requirements, analyzing interconnected detention basins and detention basin and outlet structure sizing.

The computer model analyzed the one, two, ten, and one hundred-year storm events utilizing Waukesha Atlas 14 IDF curves. NOAA Waukesha MSE3 rainfall distribution is used. The necessary hydrographs were generated to determine the storm water runoff rates, depths and volumes for pre and post development conditions. This information is used to calculate detention basin size and outlet requirements.

Run-off curve numbers for the onsite and off-site areas were determined using the requirements outlined in the NRCS TR-55 Manual. The existing soils on the site are of hydrologic soil group type B. The central portion of the site is made up of predominantly Warsaw Loam (WhA). Curve numbers for proposed open space conditions have been based on hydrologic soil group type B within the development footprint.

The post development analysis runoff curve numbers are assigned based on TR-55 standards, and by calculating composite curve numbers per TR-55 standards, as applicable.

The rainfall depths for the 24-hour duration storm are:

Rainfall Depths for 24-Hour Storm Duration									
	(per City of Wau	ıkesha Atlas rain event da	ta)						
1-year	2-year	10-year	100-year						
2.3	2.7	4.0	5.6						

The following describes the curve numbers assigned for composite calculations:

Curve Numbers: Impervious Area (Pavement, Sidewalk, Etc.), CN = 98 Impervious Rooftop, CN = 98 Grass/Open Space in Good Condition: Type "B" Soil, CN = 61 Existing Site Cropland: CN = 70 (per current standards)

Existing Site Description & Drainage Summary

Description

The existing site is a vacant 7.043 acre property, located at the north side of Saylesville Road, adjacent to Waukesha West High School, in the City of Waukesha, Wisconsin. The parcel contains a navigable water way and wetland that straddles the southernmost property line with in the water way. The site is currently being farmed and has contained row crops during the growing season. The general drainage path for this site is in the north to south direction, and discharges to the water way.

The following is a summary of the existing conditions analysis:

Hyd. No.	Hydrograph type (origin)	Inflow				Peak Ou	tflow (cfs)				Hydrograph
		hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		1.105	1.658			4.143			10.64	E-1

Post-Development Site Description & Drainage Summary

Description

Living Word Evangelical Lutheran Church is a proposing a new church development comprised of a single building and parking facilities. The subject property is a 7.043 acre lot, of which 3.087 acres is being proposed to be developed.

Storm water from the proposed site will flow in the north to south direction, maintaining existing drainage patterns. A proposed storm water management facility will be located at the southernmost tip of the property and will discharge to the navigable drainage way maintaining the existing discharge point. Post development discharge rates from the facility will be maintained and/or reduce as compared to pre-existing conditions for the 2, 10, and 100 year storm events, meeting City requirements.

Proposed Drainage Areas

- Area P-1 encompasses the majority for the developed site, which will contain the proposed building, parking lot and green space around building. This area will drain to the proposed storm water pond.
- Area P-2 encompasses open space, located between the developed site and the proposed storm water facility. This area has been intentionally left to be open space and has the potential to be developed into a future parking lot expansion, during future phases. This area will drain to the proposed storm water facility.
- Area UD-1 is an undetained drainage area, which includes the rear yard around the proposed building and will flow directly to the navigable water way, maintaining existing drainage patterns.

Future Phase Considerations

The proposed site has been design to meet the needs of the Living Word Church, with the knowledge that one of the hopes is spread their message and grow their congregation. Knowing

this is a possibility for the future there have been a few design considerations that have been proposed to meet potential future demand. First, with the high ground water in the areas of the proposed storm water management facility, the wet pool has been slightly over designed to allow for a future phase to be put online without disturbing the wet pool itself. The hope would be to expand the live storage area while maintaining the wet pool. Second, future expansion may likely include additions to the proposed building. With this in mind, the proposed storm sewer has been designed to handle additional flow generated by future roofs or developed area to the north of the proposed site. These design considerations have been included to ensure that the owner has the option to expand in the future with minimal disturbance to infrastructure proposed as part of this phase.

Proposed Drainage Summary

The following provides a summary of the peak discharge rates for the proposed drainage areas and rain gardens. Please refer to the attachments for additional information.

Hyd.	Hydrograph	Inflow						Hydrograph			
No.	type (origin)	Hyd(s)	1-Yr	2-Yr	3-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	description
3	SCS Runoff		2.785	3.460			6.012			11.69	P-1
4	SCS Runoff		0.080	0.159			0.665			2.359	P-2
5	SCS Runoff		0.023	0.064			0.280			0.924	UD-1
7	Combine	3, 4,	2.813	3.534			6.476			13.60	INFLOW TO POND P-1
8	Reservoir	7	0.107	0.121			1.428			9.611	POND P-1
9	SCS Runoff		0.740	0.840			1.196			1.953	UD-2
10	Combine	5, 8, 9	0.801	0.947			1.574			10.33	TOTAL DISCHARGE FROM SITE

Descriptions & Summaries of Storm Water Practices

Wet Pond P-1

Wet Pond P-1 receives water from drainage areas P-1 and P-2 through means of sheet flow and a system of inlets and storm sewer.

- Top of Berm = 61.25
- Overflow Weir = 60.25
- Top of Riser = 59.35
- 100-year = 59.93
- 10-year = 59.45
- 2-year = 58.96
- $2 \sim 12$ " culvert = 57.50
- Bottom of basin = 52.50
- NWL = 57.50
- 2" Orifice = 57.50

Infiltration Considerations

The geotechnical investigations and reporting indicate a predominance of soils with low infiltration rates (with infiltration rates less than 0.6 in/hr) below the topsoil. As such, the site is not ideal for storm water management through infiltration [NR 151.12(5)(c)6 and NR 151.124].

Total Site Release Rates

The table below summarizes the storm water release rates associated with the development. The Allowable Release Rate is defined as the pre-development release rate, which is the existing/pre-development drainage area. The Total Proposed Release Rate is calculated as the addition of the:

- Wet Pond P-1 release rate at the peak time
- Discharge from undetained area UD-1 at the peak time

The table verifies that the Storm Water Management Plan reduces the post-developed flow rates to equal to or less than the corresponding pre-developed (existing) flow rates. As a result, the actual design basin will be more conservative than the modelled basin.

Site Discharge"								
Storm Event	Total Proposed Release Rate	Allowable Release Rate						
(Year)	(cfs)	(cfs)						
1	0.801	1.105						
2	0.947	1.658						
10	1.574	4.143						
100	10.330	10.640						

Site Discharge*

* Total Peak Runoff Rates are based on the addition of the peak discharge rates from the associated hydrographs at the peak time for the site; due to varying peak times, the total discharge rates are not a direct summation of the peak rates for each. Refer to the attached calculations for additional information.

Water Quality – TSS Reduction

WinSLAMM © version 10.0 was utilized to calculate the total suspended solids loadings for the rain garden drainage areas and reductions produced by the rain gardens. WinSLAMM version 10.2 allows the combining of areas and practices to produce a complete analysis in one design file. The following table provides a summary of the results of the WinSLAMM © analysis:

SLAMM Results – Living Word Church March 22, 2010										
March 22, 2019Rain file: Milwaukee WI 1969.RAN Model Run Start Date: 03/28/69 Model Run End Date: 12/06/69Particulate Solids Runoff VolumeParticulate Solids 										
	(cu ft)	(mg/L)	(lbs)							
Total Without Controls:										
P-1, P-2, UD-1, & UD-2	102,971	109.3	702.6							
Total Site	102,971	-	702.6							
Total After Outlet Controls:										
P-1, P-2, UD-1, & UD-2	103,064	20.20	130.0							
Total Site	103,064	-	130.0							
Percent Reduction: Total Rear Yard/Rain Garden Site	N/A	N/A	81.50%							

Conclusion

The proposed Living Word Evangelical Lutheran Church development meets the storm water management requirements of the City of Waukesha Storm Water Management chapter 32 requirements and WDNR NR 151.

APPENDIX 1

Geotechnical Report

Construction • Geotechnical Consulting Engineering/Testing

February 17, 2017 CM16163

Mr. John Bartelson Living Word Church 2712 Sussex Lane Waukesha, WI 53188-1335

Re: Geotechnical Exploration Proposed Living Word Church CTH X and Future West High Drive Waukesha, Wisconsin

Dear Mr. Bartelson:

Construction • Geotechnical Consultants, Inc. (CGC) has completed the subsurface exploration for the above-referenced project. The purpose of this exploration was to determine the subsurface conditions across the site and to provide geotechnical-related recommendations regarding site preparation, foundation, floor slab and pavement design/construction. In addition, the site's soils were evaluated to provide an indication as to their infiltration properties. One copy of the report is provided for your use, with an additional copy being forwarded electronically to Mr. Matthew Bailey of Trio Engineering.

PROJECT DESCRIPTION

We understand that the project consists of the proposed construction of an approximate 12,000 sq ft church on a vacant parcel located at the northwest corner of CTH X and future West High Drive in Waukesha, Wisconsin. The basic construction will consist of a single-story, slab-on-grade building, supported on conventional spread footings. Building foundation loads are expected to be relatively light to moderate with estimated maximum column and wall loads on the order of 75 kips and 3 klf, respectively. Current plans indicate that the finished floor of the building will be established at Elevation 63.5 ft. Existing site grades within the planned building footprint vary between Elevations 61 and 63 ft; therefore, relatively minor fills are anticipated to establish the planned building subgrade.

The development will include at-grade surface parking for 78 vehicles and a related access drive southwest/west of the building. Other planned site improvements include the construction of stormwater management area south of the new pavement areas. Future expansion plans include a building addition to the northwest side of the church and an expansion of the parking lot to accommodate 160 total vehicles.

EXPLORATION PROGRAM

The subsurface conditions were explored by drilling twelve (12) standard penetration test (SPT) borings across the site. Borings 1 through 6 were drilled within the footprints for the planned and future buildings to a depth of 15 ft below existing site grades. Borings 7 through 10 were drilled in the planned pavement areas and were extended to a depth of 7.5 ft. The remaining two borings, Nos. 11 and 12, were drilled within the stormwater management area and were extended to a depth of 15 ft. The number and location of the borings was selected by Trio Engineering. The boring locations were field staked by the driller as shown in plan on the Soil Boring Location Map presented in Appendix B. Ground surface elevations at the test locations were determined by interpolating between plan contours shown on the "Preliminary Site Utility and Grading Plan" (dated 1/13/17). Specific procedures used for drilling and sampling are described in Appendix A.

Water level observations were made at each boring location during and immediately upon completion of drilling. Representative samples of the subsoils were also collected during the field exploration for classification and laboratory testing. The soils were classified by a geotechnical engineer using the Unified Soil Classification System (USCS) and the samples collected from the stormwater management area borings (i.e., No. 11 and 12) were also classified in accordance with the descriptive procedures, terminology and interpretations presented by the USDA - NRCS Field Book for Describing and Sampling Soils (version 2.0, dated September 2002). Pocket penetrometer readings were also obtained on intact cohesive samples, where appropriate, to aid in the evaluation of their shear strength properties. The final logs and soil evaluation-storm form prepared by the engineer per the USCS and USDA procedures are presented in Appendices B and C, respectively.

SITE CONDITIONS

A. <u>Surface Conditions</u>

The proposed development area is depicted on the Soil Boring Location Map attached in Appendix B. The site is currently an agricultural field. The subject parcel has a fairly level to slightly rolling topography, with site grades typically varying from Elevations 57 to 66 ft. The site slopes gently downward to the south.

B. <u>Regional Geology</u>

Surficial soil deposits (i.e., upper 5 ft) within the planned development site are mapped in the *Soil Survey for Milwaukee and Waukesha Counties* as Warsaw loam (WeB) and Warsaw silt loam

(WhA). The Warsaw series is generally described as loamy glaciofluvial soils that have silt loam, loam, sandy clay loam and stratified sand to gravel underlain by sand and gravel outwash deposits. The Warsaw soil series is characterized as being well drained with a seasonal high ground table in the range of 60 to 80 in.

C. <u>Subsurface Conditions</u>

The subsurface exploration program revealed a fairly uniform soil profile across the site. The generalized subsurface profile consists of the following (in descending order): 12 to 18 in. of black to dark brown clayey topsoil; 0 to 3.5 ft of brown lean clay; underlain by fine to coarse sand and gravel or sand to the maximum depths explored (i.e., 15 ft). Pocket penetrometer readings ranged between 0.75 and 1.75 tsf within the natural surficial lean clays, indicating the cohesive soils are medium stiff to stiff. The underlying natural granular soils are typically medium dense to very dense, with SPT blow counts (i.e., N-values) generally ranging between 25 to greater than 100 blows/ft.

Exceptions to the above-described generalized profile were noted and include the following:

- Loose to medium dense silt soils were observed below the surficial lean clay and/or topsoil in Borings 1 and 12, respectively, between the depths of 3.5 to 6 ft and 1 to 2 ft.
- Medium dense to very dense sandy silt soils were observed below the prevailing underlying sand and gravel soils in Borings 2 through 6, 11 and 12.

D. <u>Groundwater Conditions</u>

Groundwater was encountered within all the borings at depths of 3.5 to 6 ft during and/or upon completion of drilling. Groundwater was typically observed within the underlying sand and gravel soils at fairly consistent levels during and following drilling and corresponding to an elevation in the range of 56 to $58.5\pm$ ft. Water levels can be expected to fluctuate, however, based on seasonal variations in precipitation, infiltration, surface runoff, etc.

More detailed information regarding the subsurface and groundwater conditions is presented on the boring logs contained in Appendix B. The completed Soil Evaluation-Storm form, with detailed soil profile descriptions prepared for the two stormwater borings following USDA classification procedures, is presented in Appendix C.

DISCUSSION AND RECOMMENDATIONS

Within the limitations described below, it is our opinion that the site is suitable for construction and that the planned structure can be supported by conventional spread footings. Specific recommendations for site preparation, as well as foundation, floor slab and pavement design/construction, are presented in the following subsections. Discussion regarding the infiltration characteristics of the subsoils within the designated stormwater basin is presented in Subsection E. Additional information regarding the conclusions and recommendations presented in this report is discussed in Appendix D.

A. <u>Site Preparation</u>

To prepare the site for construction, we recommend that surficial vegetation and topsoil be removed from within and to a point at least 5 ft beyond the proposed building and pavement limits, along with clearing and grubbing of the trees on the site. The observed topsoil thickness ranges between 12 and 18 in. Topsoil is generally not considered suitable for re-use as structural fill and should be stockpiled in designated areas beyond the construction limits, or removed from the site. However, these soils may be used in landscape areas.

Based on planned site grades, it is our understanding that relatively minor cutting and filling (i.e., generally 2 ft or less) will be required to establish the building pad and the majority of the surrounding parking/pavement area subgrades. Following the removal of surficial vegetation/topsoil, the exposed subgrades are generally expected to consist of the medium stiff to stiff brown lean clay or loose silt soils. The clayey soils are mottled and/or exhibit relatively low unconfined compressive strengths (i.e., medium stiff to stiff) and display an average moisture content of around 23%. Therefore, some areas of instability following topsoil removal should be anticipated. Furthermore, these soils are highly susceptible to disturbance and loss of bearing capacity if subjected to repeated trafficking by wheeled or tracked construction equipment, especially if wet. To assist in the evaluation of the subgrades across the site, we recommend that exposed subgrades be evaluated by proof-rolling with a loaded tri-axle dump truck, scraper or a similar piece of rubber-tired construction equipment. The purpose of proof-rolling is to check the overall stability of the exposed subgrade, as well as for identifying soft or yielding conditions that may require recompaction or undercutting prior to any fill placement. If unstable areas are detected, an initial attempt should be made to aerate and densify the subgrade by recompaction where natural moisture contents are at appropriate levels (i.e., on the dry side of optimum moisture content). If this procedure is ineffective, the disturbed soils should be undercut and replaced with compacted fill and/or stabilizing materials such as an imported 3-in. breaker rock. A relatively firm, non-yielding subgrade should be established prior to proceeding with fill placement.

After the subgrade is prepared as described above, the exposed subgrade should be thoroughly compacted with an appropriate piece of construction equipment. Fill placement should then proceed as necessary to establish planned subgrade elevations. Selection, placement and compaction of engineered fills should be in accordance with the guidelines presented in our "Recommended Compacted Fill Specifications" included in Appendix E. It is anticipated that the bulk of the fills used to develop building and pavement area subgrades will originate from completed site cuts and from the stormwater basin excavation. These materials are generally expected to consist of the prevailing lean clay, with possible silt and sand/gravel soils. These materials are generally deemed suitable for developing building and pavement area subgrades. The placement of the clavey and silt soils in structural areas will require close observation on a regular basis during fill placement including the monitoring of moisture contents, compaction levels and the overall stability of the prepared fill subgrade. Natural moisture contents of the clay soils ranged between 21 and 25%. As such, some moisture conditioning of the clay and silt soils should be anticipated to achieve desired compaction levels noted in Appendix E. Engineered fills placed below structures and pavement areas should be compacted to a minimum of 95% and 93 to 95%, respectively, of the modified Proctor (ASTM D1557). Regular field density testing should be conducted during fill placement to confirm that satisfactory compaction levels are being achieved.

B. Foundation Design

Based on the proposed finished floor elevation of 63.5 ft, bearing conditions are expected to be fairly uniform. It is anticipated that foundations for the planned building will bear within the natural soil strata described as either the stiff lean clay and/or the medium dense to very dense fine to coarse sand and gravel. However, loose silt soils may be encountered within the future expansion footprint (i.e., Boring 1).

Provided the building pad subgrade is developed per the recommendations outlined in the Site Preparation section of this report, the following parameters should be used for foundation design, assuming that all footings are bearing directly on the above mentioned suitable bearing subsoils:

٠	Maximum Allowable Bearing Pressure:	2,000 psf
•	Minimum Foundation Widths:	
	Continuous wall footings:	18 in.
	Individual column pads:	30 in.

CGC, Inc.

- Minimum Footing Depths: -- Exterior footings:
 - -- Interior footings:

4 ft No minimum required

• Site Classification for Seismic Design

In our opinion, the average soil/rock properties in the upper 100 ft of the site (based on SPT blow count N-values exceeding 15 blows per foot, on average, in granular soils) can be conservatively characterized as a stiff soil profile. This characterization would place the site in Site Class D for seismic design according to the International Building Code, current edition (see Table 1613.5.2).

We recommend that footing subgrades be observed by a CGC representative during the excavation operation to check that bearing soils are consistent with the findings of the exploration. The evaluation would include checking for localized soft and/or loose zones within the near surface natural subsoils that may have gone undetected beyond the borings completed for the project, and confirming the adequacy of undercutting, if deemed necessary, should questionable weak clayey zones be encountered at and/or below planned footing grades. Should unsuitable conditions occur, footings can be either extended to bear on the underlying competent soils (i.e., sand and gravel) or established on engineered granular fill and/or crushed stone placed within the undercut excavation. If an undercut/refill scheme is deemed necessary, the width of the over-excavation should be equal to the footing width plus the depth of undercut below the base of the footing. It should be recognized that observed groundwater levels were detected at depths of 0.5 to 1.5 ft below planned footing grades. Should undercutting be deemed necessary, measures may need to be implemented to control groundwater inflows. Fill placement should proceed in accordance with the guidelines presented in Appendix E. Alternately, footing grades could be re-established with a lean-mixed concrete having a minimum strength of 500 psi. The main advantage with lean concrete is that oversizing of the excavation can be reduced to a maximum width which equals the footing width plus approximately 6 in. each side. Footings can then be cast directly on the lean concrete base.

Providing the foundation design/construction recommendations discussed above are followed, we estimate that total and differential settlements should not exceed 1.0 and 0.5 in., respectively.

C. <u>Floor Slabs</u>

After preparing the building site as described in the Site Preparation section of this report, soils present at floor subgrade should generally be suitable for slab-on-grade construction. Based on the proposed floor slab grade, subgrade soils beneath the slab are expected to consist of engineered fills

CGC, Inc.

placed to establish the planned floor subgrade and/or natural soils. Floor slabs supported on the prepared subgrade may be designed using a subgrade modulus of 100 pci. At a minimum, the slab should contain mesh for crack control. Prior to slab construction, the subgrades should be recompacted to densify soil that may become disturbed or loosened during construction activities. To serve as a capillary break, the final 4 to 6 in. of soils placed below the slab should consist of an imported well-graded sand or gravel with no more than 5 percent by weight passing the No. 200 U.S. Standard Sieve. To further minimize the potential for moisture migration, a plastic vapor barrier could also be utilized. Fill and drainage course materials required to prepare floor slab subgrades should be placed in accordance with the guidelines presented in Appendix E. If clean crushed stone is used as a drainage course material, these materials should be densified until no deflection or settlement is observed under compaction equipment.

Floor slabs should be isolated from the building walls and columns with a compressible filler, and the design should include an adequate number of isolation and contraction joints.

D. <u>Pavement Design</u>

We assume the pavements within the access drives and vehicle parking lots surrounding the building are expected to be exposed primarily to automobile traffic (i.e., Traffic Class I per the 2016 WAPA Design Guide), with limited truck traffic. The pavement subgrade will consist of a combination of the natural lean clay soils or newly-compacted fill. Prior to base course placement, the subgrade soils should be proof-rolled as discussed in the Site Preparation section of this report, and evaluated regarding the need for any undercutting. The clayey soils will control the pavement thickness design. Accordingly, the pavement section tabulated below was selected based on a CBR value in the range of 2 to 4 for the prepared subgrade, WAPA design guidelines and a design life of 15 to 20 years.

Material	Thickness (in.)	WisDOT Specification ¹
Bituminous upper layer	1.5	Section 460, Table 460-1, 9.5 mm and 12.5 mm
Bituminous lower layer	2.0	Section 460, Table 460-1, 12.5 mm and 19.0 mm
Dense graded base course (fully- fractured crushed stone)	8.0	Sections 301 and 305, 31.5 mm
TOTAL THICKNESS	11.5	

Table 1Recommended Pavement Section

Notes:

- 1. Wisconsin DOT *Standard Specifications for Highway and Structure Construction*, latest edition, including supplementals but <u>excluding</u> limitations in Section 460.3.2 relating layer thickness to aggregate size.
- 2. Compaction requirements:
 - -- Bituminous concrete: Refer to Section 460.3.3.
 - -- Base course: 95% modified Proctor (ASTM D1557); also refer to Section 301.3.4.2, Standard Compaction.
- 3. Type LT or equivalent asphaltic pavement is recommended. Refer to Section 460, Table 460-2 of the *Standard Specifications*.

Pavement areas subjected to concentrated wheel loads, such as near the dumpster pad, etc., should be constructed of a Portland cement concrete. The slab should be at least 6 in. thick, contain mesh reinforcement for crack control, and be underlain by at least 4-inches of well-graded granular soils. It is recommended that the edges of these pads be thickened to 12 inches to minimize cracking. A subgrade modulus of 100 pci should be used for concrete pavement design founded on recompacted/stable soils.

The pavement design assumes a stable/non-yielding subgrade and a preventative maintenance program. If there is a period of delay between completion of subgrade preparation and the placement of base course and pavements, the subgrade could soften or become disturbed due to wet conditions or construction traffic. Unstable soils should be recompacted or replaced immediately prior to placement of base course and pavement. The subgrade should also be protected from frost during construction.

E. <u>Stormwater Infiltration Potential</u>

Based on the concept plan provided for our review, management of stormwater runoff is anticipated to be addressed by the utilization of a basin located in the southwest corner of the site. The proposed base elevation of the basin will be established near Elevation 57 ft. Current site grades within the basin footprint vary between Elevations 58 to 62 ft. Therefore, cuts on the order of 1 to 5 ft will be required to establish the bottom of the basin.

The subsoil conditions within the basin area were explored by the drilling of two borings (i.e., Nos. 11 and 12). The borings were extended to a depth of 15 ft below the existing ground surface. Based on the relatively shallow depth to groundwater (i.e., 3.5 to 5.5 ft, corresponding to Elevations 55.9 to 56.4 ft) as revealed by the pond borings and elsewhere across the site, it is our opinion that this site has a very limited capacity for infiltration of stormwater through the use of infiltration devices. Therefore, as there is only a 1 ft or less separation from the bottom of the basin and observed groundwater, the site is considered to be **excluded** from infiltration (except for roof runoff). The on-site lean clays appear to be suitable to construct a "Type A" clay liner according to guidelines outlined in Section A of Appendix D of the Wisconsin Department of Natural Resources (WDNR) *Technical Standard 1001* (Wet Detention Pond), however. Because groundwater was observed within 1 ft of the planned bottom of the pond, the need for dewatering measures to be implemented during pond construction should be expected.

In summary, based on the soil classifications, guidelines in the Wisconsin DNR *Technical Standard 1002*, and the lack of 5 ft of separation between the bottom of pond and the seasonal high groundwater, the site should be eligible for *exclusion* under Chapter NR 151 Wis. Adm. Code guidelines, in our opinion. Should infiltration be performed at the site, a design infiltration rate of 0.07 in. per hour is recommended based on the limiting lean clay and guidelines provided in the aforementioned *Standard*.

The soil evaluation-storm form prepared by the engineer per USDA procedures is presented in Appendix C.

CONSTRUCTION CONSIDERATIONS

Due to variations in weather, construction methods and other factors, specific construction problems are difficult to predict. Soil related difficulties which could be encountered on the site are discussed below:

- 1. Due to the sensitive nature of the silty and/or clayey soils at the site, we recommend that general site grading activities be completed during dry weather, if possible. Earthwork construction during the early spring or late fall could be complicated as a result of wet weather and freezing temperatures.
- 2. Trafficking of prepared/stabilized subgrades should be kept to a minimum to minimize disturbance of the subgrade.
- 3. During cold weather, exposed subgrades should be protected from freezing before and after footing construction. Fill should never be placed while frozen.
- 4. Excavations extending greater than 4 ft in depth below the existing ground surface should be sloped or braced in accordance with current OSHA standards.
- 5. Based on observations made during the field exploration, groundwater infiltration into footing excavations is not expected to be a problem. However, should isolated undercutting be deemed necessary and/or water accumulate at the base of the footing excavation as a result of precipitation or seepage from interspersed sand seams (if any), we believe that satisfactory removal of seeping water (short-term) could be accomplished by using pumps operating from filtered sump pits.

RECOMMENDED CONSTRUCTION MONITORING

The quality of the foundation and floor slab subgrades will be largely determined by the level of care exercised during site development. To check that earthwork and foundation construction proceeds in accordance with our recommendations, the following operations should be monitored by CGC:

- 1. Foundation, floor slab and pavement subgrade preparation;
- 2. Fill placement and compaction;
- 3. Foundation excavation; and
- 4. Concrete placement.

CGC, Inc.

* * * * *

It has been a pleasure to serve you on this project. We look forward to continuing our project involvement by providing construction testing services during the construction phase of the project. If you have any questions or need additional consultation, please contact us.

Sincerely, CGC, Inc.

Mathanal Springstead /mlb-Nathan I. Springstead, P.E., C.S.T.

Senior Staff Engineer

HC thank

Jeff P. Simkowski, P.E. Senior Consulting Professional

Encl: Appendix A - Field Exploration Appendix B - Soil Boring Location Map Logs of Test Borings (12) Log of Test Boring - General Notes Unified Soil Classification System Appendix C - Soil Evaluation-Storm Form Appendix D - Document Qualifications Appendix E - Recommended Compacted Fill Specifications

cc (via email): Mr. Matthew Bailey / Trio Engineering

APPENDIX A

FIELD EXPLORATION

APPENDIX A

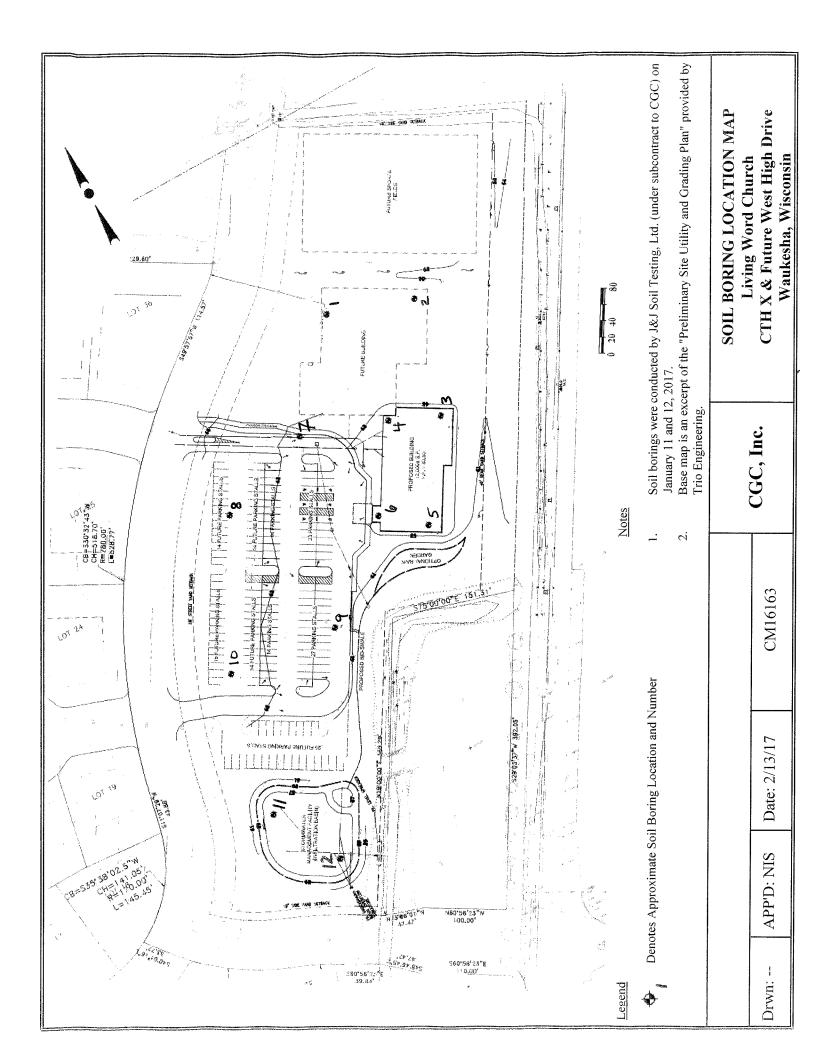
FIELD EXPLORATION

A series of twelve (12) 7.5 to 15 ft deep Standard Penetration Test (SPT) soil borings were drilled at the site between January 11 and 12, 2017 at the approximate locations shown on the Soil Boring Location Map presented in Appendix B. The soil borings were drilled by J&J Soil Testing, Ltd. (under subcontract to CGC, Inc.) using a truck-mounted, rotary drill rig equipped with hollow-stem augers. Ground surface elevations at the boring locations were determined by methods described in this report.

In each boring, soil samples were generally obtained at 2.5-ft intervals to a depth of 10 ft and at 5-ft intervals thereafter. The soil samples were obtained in general accordance with specifications for standard penetration testing, ASTM D 1586. The specific procedures used for drilling and sampling are described below.

1. Boring Procedures Between Samples

The boring is extended downward, between samples, by a hollow-stem auger.


2. <u>Standard Penetration Test and Split-Barrel Sampling of Soils</u> (ASTM Designation: D 1586)

> This method consists of driving a 2-inch outside diameter split barrel sampler using a 140pound weight falling freely through a distance of 30 inches. The sampler is first seated 6 inches into the material to be sampled and then driven 12 inches. The number of blows required to drive the sampler the final 12 inches is recorded on the log of borings and is known as the Standard Penetration Resistance. Recovered samples are first classified as to texture by the driller.

During the field exploration, the driller visually classified the soil and prepared a field log. *Field screening of the samples for possible environmental contaminants was not conducted during the field exploration program, as environmental site assessment activities were not part of CGC's work scope.* Water level observations were made in the borehole during and after drilling and are shown at the bottom of each boring log. Upon completion of drilling, the boreholes were backfilled in accordance with WDNR regulations, and the soil samples were delivered to our laboratory for visual classification and laboratory testing. The soils were visually classified by a geotechnical engineer using the Unified Soil Classification System. The final logs prepared by the engineer and a description of the Unified Soil Classification System are presented in Appendix B. USDA classifications are presented in the Soil Evaluation - Storm Form attached in Appendix C.

APPENDIX B

SOIL BORING LOCATION MAP LOGS OF TEST BORINGS (12) LOG OF TEST BORING - GENERAL NOTES UNIFIED SOIL CLASSIFICATION SYSTEM

LOG OF TEST BORING

Project Living Word Church CTH X & Future West High Drive Location Waukesha, Wisconsin

Boring No		1
Surface Ele	evation (ft)	63.8
Job No.	CM16	163
Sheet	1 of	1

336 S. Curtis Rd, West Allis, WI 53214 (414) 443-2000, FAX (414) 443-2099

SAMPLE					VISUAL CLASSIFICATION	SOIL	SOIL PROPERTIES					
No.	T Rec P (in.)	Moist	N	Depth (ft)	and Remarks	qu (qa) (tsf)	W	LL	PL	LOI		
				 	16" Black Clayey TOPSOIL (OL)				-			
1A/B	14	M	6		Stiff, Brown Mottled Lean CLAY; Little Fine Sand, Trace Gravel (CL)	(1.25)	23.5					
2	6	M	7		Loose, Brown Mottled SILT; Little Clay and Fine		16.7					
_				└── └── └── 5─ └─	Sand, Trace Gravel (ML)							
3	15	W	40		Dense to Very Dense, Brown Fine to Coarse SAND and GRAVEL; Trace Silt, Few Scattered Cobbles and Boulders (SP/GP)							
4	14	W	41									
				10- - - 								
5	0	-	100/ 16"	 - 								
				15 - - - 	End of Boring at 15 ft Backfilled with Bentonite Chips							
	e Drill	ing		ATER	LEVEL OBSERVATIONS Upon Completion of Drilling 5.5' Start 1	GENERA	L NO					
Time Deptl Deptl	After h to W h to Ca	Drillir ater ave in	ng			J&J Chief JP Edito	r JF	R	ig CI	ИΕ		

	G	CI	Inc		LOG OF TEST BORING Project Living Word Church CTH X & Future West High Drive Location Waukesha, Wisconsin 336 S. Curtis Rd, West Allis, WI 53214 (414) 443-2000, FAX (414) 443-200	Boring No. 2 Surface Elevation (ft) 63.0 Job No. CM16163 Sheet 1 of 1 099					
	SA	MPL	E		VISUAL CLASSIFICATION	SOIL	PRO	PEF	RTIE	S	
No.	Rec (in.)	Moist	N	Depth (ft)	and Remarks	qu (qa)	W	LL	PL	LOI	
1				Ļ	18" Black Clayey TOPSOIL (OL)	(tsf)					
1A/B	12	M	9								
					Stiff, Dark Brown Mottled Lean CLAY; Little Fine Sand, Trace Gravel (CL)	(1.5)	24.7				
				 	Medium Dense to Very Dense, Brown Fine to Coarse SAND and GRAVEL; Trace Silt, Some						
2	14	М	53	⊢ ⊢	Scattered Cobbles and Boulders (SP/GP)						
				L <u>7</u> 5-	(토)) (동일) (동일)						
	10	** *		⊢ 							
3	10	W	67	 - 	1. 특상 북년 북년 북년 북년						
4	18	W	27								
-											
	- - -			└── 10— └─	· · · · · · · · · · · · · · · · · · ·						
				L 							
				 	京: 半 - キャー 寺: 半 - キョー						
5	18	W	13	 	Medium Dense, Light Brown Sandy SILT; Some Clay, Little Fine to Coarse Gravel (ML)						
				— 15— -	End of Boring at 15 ft Backfilled with Bentonite Chips						
The second s				 							
				-							
			ا ۱۸/۲	- 20-	LEVEL OBSERVATIONS	SENERA		тсе			
While	Drilli	ng		<u></u>		1/17 End	1/11/				
	After	Drillin			Driller Ja	&J Chief IP Editor	JP	Ri	g CN	IE-45	
Depth					Drill Method			····	••••••		

The stratification lines represent the approximate boundary between soil types and the transition may be gradual.

CGC Inc.					LOG OF TEST PIT Project Living Word Church CTH X & Future West High Drive Location Waukesha, Wisconsin 336 S. Curtis Rd, West Allis, WI 53214 (414) 443-2000, FAX (414) 443	Boring N Surface E Job No. Sheet	Elevatior C	n (ft) M16	163	
L	SA	MPL	F				. PRO	PE		ES
	TROC			Depth	VISUAL CLASSIFICATION and Remarks	qu				1
No.	P E (in.	Moist	N	(ft)		(qa) (tsf)	W	LL	PL	H.P.' (in.)
				L 	13" Black Clayey TOPSOIL (OL)					
1	8	М	7		Stiff, Brown Mottled Lean CLAY; Little Fine Sand Trace Gravel (CL)	I, (1.5)	23.2			
				 	Medium Dense to Dense, Brown Fine to Coarse SAND and GRAVEL; Trace Silt, Some Scattered					
2	6	M/W			Cobbles and Boulders, Few Wet Fine to Medium Sand Layers (SP/GP)					
3	18	W	29	<u> </u> -						
				L 						
4	2	W	32							
				 10-	· 특징 - 특징 · 특징 북· 골					
				⊢- 						
-				F F						
	-									
5	18	W/M	20	1 	Medium Dense, Light Brown Sandy SILT; Some Clay, Little Fine to Coarse Gravel (ML)					
				⊢ 15-	End of Boring at 15 ft					
				⊨ ∟_	Backfilled with Bentonite Chips				:	
				 !						
						7 7 7				
				 -						
			w		LEVEL OBSERVATIONS	GENERA		TES	5	
Time Dept Dept	th to W th to C	Drillir [/] ater ave in	<u>⊻ 4</u> 1g	.5'		1/11/17 End J&J Chief JP Edito	1/11/ f JP r AS	/ 17 R		ME-45
so.	il type	es and	the t	ransiti	on may be gradūāl.					

	G	CI	n		LOG OF TEST BORING Project Living Word Church CTH X & Future West High Drive Location Waukesha, Wisconsin 336 S. Curtis Rd, West Allis, WI 53214 (414) 443-2000, FAX (414) 443-2	Boring N Surface E Job No. Sheet	levatior C	M161	163	
	SA	MPL	E		VISUAL CLASSIFICATION	SOIL	. PRO	PEF	RTIE	S
No.	$\frac{T}{Y}$ Rec $\frac{P}{E}$ (in.)	Moist	N	Depth (ft)	and Remarks	qu (qa) (tsf)	W	LL	PL	LOI
				t L	12" Black Clayey TOPSOIL (OL)	((()))				
1	13	M	6	 	Medium Stiff to Stiff, Dark Brown Mottled Lean CLAY; Little Fine Sand, Trace Gravel (CL)	(1.0)	20.8			
2	18	M/W	48	+ _ ∑ _ _ _ _ _ _ 5−	Dense to Very Dense, Brown Fine to Coarse SAND and GRAVEL; Trace Silt, Some Scattered Cobbles and Boulders (SP/GP)					
3	18	W	51							
4	7	W	32	└── │ │ └── │ │ 10──						
5A/B	18	W	30		Medium Dense to Dense, Light Brown Sandy SILT; Some Clay, Little Fine to Coarse Gravel (ML) End of Boring at 15 ft Backfilled with Bentonite Chips					
I	<u> </u>		W		LEVEL OBSERVATIONS	GENERA		TES	 ;	
Time Deptl Deptl	n to W n to Ca	Drillin ater ave in	ıg	1.0' ±	Driller	2/17 End &J Chief JP Edito d 2.25" 1	r AS	R	ig CN	/IE-45

	G	СІ	nc		LOG OF TEST BORING Project Living Word Church CTH X & Future West High Drive Location Waukesha, Wisconsin 336 S. Curtis Rd, West Allis, WI 53214 (414) 443-2000, FAX (414) 443-200	Boring No Surface El Job No. Sheet	evatior C	M161	61.2 63	
••••••••••••••••••••••••••••••••••••••	SA	MPL	E		VISUAL CLASSIFICATION	SOIL	PRC	PEF	۲IE	S
No.	Rec (in.)	Moist	N	Depth (ft)	and Remarks	qu (qa)	W	LL	PL	LOI
	2 (,			 	14" Black Clayey TOPSOIL (OL)	(tsf)				
1	10	M	14	 - 	Medium Dense to Dense, Brown Fine to Coarse SAND and GRAVEL; Trace Silt, Some Scattered Cobbles and Boulders, Few Moist to Wet Fine to					
2	18	W	38		Medium Sand Layers (SP/GP)					
				L 						
3	12	W	40							
4	18	W	39							
					Medium Dense, Light Brown Sandy SILT; Some	-				
5	18	W	12	L 	Clay, Little Fine to Coarse Gravel (ML)					
			W	- 20-	End of Boring at 15 ft Backfilled with Bentonite Chips LEVEL OBSERVATIONS	SENERA	LNO	TES		
While Time Depth Depth	After to W	Drillin ater	<u><u> </u></u>	.5'	Upon Completion of Drilling Start	1/17 End &J Chief JP Editor	1/11/ JF AS	17 R		4E-45

The stratification lines represent the approximate boundary between soil types and the transition may be gradual.

6	G	C	Inc		Lc	LOG OF TEST BORING oject Living Word Church CTH X & Future West High Drive cation Waukesha, Wisconsin Curtis Rd, West Allis, WI 53214 (414) 443-2000, FAX		Boring No Surface E Job No. Sheet	levation C	M161	61.7 163	
[SA	MPL	E			VISUAL CLASSIFICATION		SOIL	PRO	PEF	٦TIE	S
No.	T Rec	Moist	N	Depth (ft)		and Remarks	-	qu (qa)	PL	LOI		
	E (111.)					14" Black Clayey TOPSOIL (OL)		(tsf)				
1	12	M	6			Stiff, Dark Brown Mottled Lean CLAY; Litt Sand, Trace Gravel (CL)	tle Fine	(1.25)	21.9			
2	15	W	45			Dense, Brown SAND and GRAVEL; Trace Some Scattered Cobbles and Boulders (SP/C						
3	1	W	100/ 16"		1		-					
4	12	W	40									
5	6	W	12			Medium Dense, Light Brown Sandy SILT; S	Some					
_						Clay, Little Fine to Coarse Gravel (ML)				-		
						End of Boring at 15 ft Backfilled with Bentonite Chips						
			W	20 ATER	R LE	VEL OBSERVATIONS	G	ENERA	L NO	TES	•	
Time Depth Depth	While Drilling											

C	G	СІ	nc		LOG OF TEST BORING Project Living Word Church CTH X & Future West High Drive Location Waukesha, Wisconsin 36 S. Curtis Rd, West Allis, WI 53214 (414) 443-2000, FAX (414) 443-20	Boring Nc Surface El Job No. Sheet	evatior C	i (ft) M16 1	163	
	SA	MPL	.E		VISUAL CLASSIFICATION	SOIL	PRO	PEF	₹TIE	S
No, j	Rec (in.)	Moist	N	Depth (ft)	and Remarks	qu (qa)	Ŵ	LL	PL	LOI
				L	12" Black Clayey TOPSOIL (OL)	(tsf)				
1	10	M	6		6" Dark Brown Clayey TOPSOIL (OL)					
				F 	Stiff, Dark Brown to Brown Mottled Lean CLAY; Little Fine Sand, Trace Gravel (CL)	(1.25-1.5)	23.9			
-										
2	12	М	33	 5	Dense, Brown Fine to Coarse SAND and GRAVEL; Trace Silt, Few Scattered Cobbles and Boulders (SP/GP)					
				¦⊈ I						
3	16	W	44	 						
			w	- 10	End of Boring at 7.5 ft Backfilled with Bentonite Chips Evel observations	ENERA	_ NO	TES		
While Time	After	Drillin		.5' ±	Driller J&	1/17 End &J Chief	JP	R	ig <u>CN</u>	1E-45
Depth Depth					¥ Logger Drill Method	JP Editor AS ad 2.25'' HSA				
			ion l the t	ines re ransiti	present the approximate boundary between					

	Project Living Word Church	Surface Elevation (ft) 64.4
	CTH X & Future West High Drive	Job No. CM16163
L	location Waukesha, Wisconsin	Sheet 1 of 1

_____ 336 S. Curtis Rd, West Allis, WI 53214 (414) 443-2000, FAX (414) 443-2099

SAMPLE					VISUAL CLASSIFICATION	SOIL	PRC	PEF	RTIE	S
No.	T Rec	Moist	N	Depth (ft)	and Remarks	qu (qa) (tsf)	W	LL	PL	H.P.'s (in.)
				 	14" Black Clayey TOPSOIL (OL)					
1A/B	15	М	5		Medium Stiff to Stiff, Dark Brown to Brown Mottled Lean CLAY; Little Fine Sand, Trace Gravel (CL)	(1.0-1.25)	21.1			
2A/B	18	M	13	⊢ 		(0.75)				
ZA/B	10		13			(0.73)				
					Dense, Brown Fine to Coarse SAND and GRAVEL; Trace Silt, Some Scattered Cobbles and Boulders (SP/GP)					-
3	10	W	46	<u>-</u>						
					End of Boring at 7.5 ft Backfilled with Bentonite Chips					
				10		GENERA	ΝΟ	TES		
						GENERA)	
Time Depth Depth	n to W n to Ca	Drillin ater ive in	-			/12/17 End J&J Chief JP Editor nod 2.25"	AS	<u> </u>	ig CI	ME-45

					LOG OF TEST BORING			ç		
\overline{C}	\mathbf{C}	СІ	n	5	Project Living Word Church	Boring No Surface E				
	G			ار ر	CTH X & Future West High Drive	Job No.	C	M161	63	
					Location Waukesha, Wisconsin	Sheet	<u> 1 </u> c	of	1	
L	61	MPL	F		336 S. Curtis Rd, West Allis, WI 53214 (414) 443-2000, FAX (414) 443-200	SOIL		DEC	оті⊏	
 	1		- E -	1	VISUAL CLASSIFICATION					.5
No. I	Rec (in.)	Moist	N	Depth (ft)	and Remarks	(qa) (tsf)	W	LL	ΡL	LOI
				L	15" Black Clayey TOPSOIL (OL)					
1A/B	15	M	6		Stiff, Dark Brown to Brown Mottled Lean CLAY;					
					Little Fine Sand, Trace Gravel (CL)	(1.25)	25.4			
				+- 						
2	9	M/W	11		Medium Dense, Brown Silty Fine to Medium SAND; Little to Some Fine to Coarse Gravel (SM)					
2	,	101/ 00		¦∑ ∟						
				 	Dense, Brown Fine to Coarse SAND and			-		
				⊢ !	GRAVEL; Trace Silt, Some Scattered Cobble and					
3	12	W	41	 	Dense, Brown Fine to Coarse SAND and GRAVEL; Trace Silt, Some Scattered Cobble and Boulders (SP/GP)					
				 	토 속 실육성					
				⊢ I	End of Boring at 7.5 ft Backfilled with Bentonite Chips					
				È ⊢						
				L I						
				r− 10− ⊢						
				F 						
				⊢ 15—						
			- 	 						
				Ē ⊢						
				L					1000	1
			17/		LEVEL OBSERVATIONS G	ENERA		TEC]	
		•							,	
While Time		ing Drillin	$\frac{\nabla}{2}$ 4	.0'	Driller J&			R	ig CN	ЛЕ-45
Depth	to W	ater	<u> </u>		Logger J Drill Method		r AS	••••		
			ion l	ines re	present the approximate boundary between on may be gradual.	4,43 I	10/1			

The stratification lines represent the approximate boundary between soil types and the transition may be gradual.

					LOG OF TEST BORING	Boring No).	10		
C		CI	n		Project Living Word Church	Surface El		(ft) 63.	8	
				_ر,ر	CTH X & Future West High Drive	Job No.				
					Location Waukesha, Wisconsin	Chart				
					36 S. Curtis Rd, West Allis, WI 53214 (414) 443-2000, FAX (414) 443-	I				
	SA	MPL	.E		VISUAL CLASSIFICATION		PERTI	ES		
No.	T Rec P (in.)	Moist	N	Depth	and Remarks	qu (qa) (tsf)	W	LL PL	LOI	
				+ L I	18" Black Clayey TOPSOIL (OL)					
1	8	М	6	<u>+</u> −	Medium Stiff, Brown Mottled Lean CLAY; Little	(0.75)				
				L_ +-	Fine Sand, Trace Gravel (CL)	(0.73)				
2	6	М	48	 	Dense, Brown Fine to Coarse SAND and GRAVEL; Trace Silt, Some Scattered Cobbles and					
				 	Boulders (SP/GP)	-				
3	10	M/W	46							
				r≛ ∟ I						
				+ 	End of Boring at 7.5 ft Backfilled with Bentonite Chips					
				L I I 10-						
				⊢ └──						
				L 						
				└── ¹⁵ ─						
	WATER LEVEL OBSERVATIONS GENERAL NOTES									
Time		Drillin		5.5'	Driller	12/17 End J&J Chief	JP	7 Rig C	ME-45	
	1 to W 1 to Ca				Logger Drill Metho	JP Editor	· AS			
The soi	strat 1 type	ificat s and	ion 1 the t	ines re ransiti	present the approximate boundary between on may be gradual.					

					(LOG OF TEST PIT	Boring No		1		
(C	G	CI	nc))	Pr	oject Living Word Church	Surface El				!
		-		<u> </u>	 T.a	CTH X & Future West High Drive	Job No. Sheet				
						·····		····· [‡] ··· (л 	. .	
					336 S.	Curtis Rd, West Allis, WI 53214 (414) 443-2000, FAX (414) 443-2					
	SA	MPL	.E			VISUAL CLASSIFICATION	SOIL	PRO	PEF	RTIE	S
No.	$\begin{array}{c} T & \text{Rec} \\ Y & P \\ E \\ (in.) \end{array}$	Moist	N	Depth (ft)	-	and Remarks	qu (qa) (tsf)	W	LL	PL	H.P.'s (in.)
						14" Black Clayey TOPSOIL (OL)					
1A/B	13	M	7	 		Medium Stiff to Stiff, Dark Brown to Brown Mottled Lean CLAY; Little Fine Sand, Trace Gravel (CL)	(1.0-1.75)	22.3	33	18	
2	6	M	100/ 15"			Dense to Very Dense, Brown Fine to Coarse SAND and GRAVEL; Trace Silt, Some Scattered Cobbles and Boulders (SP/GP)					
				-	- - - -						
3	12	W	38								
				 	+ + + +						
4	7	W	58		11 11 11 11 11 11 11 11 11				-		
				, F	* = = = =						
				⊨ 		Very Dense, Light Brown Sandy SILT; Some Clay, Little Fine to Coarse Gravel (ML)	1				

End of Boring at 15 ft
Backfilled with Bentonite Chips

	Backfined with Bentomie C	Juips		
WATER I	LEVEL OBSERVATIONS	GE	ENERAL NO	TES
While Drilling ✓ 5.0' Time After Drilling	Upon Completion of Drilling 5.5'	Start 1/11/ Driller J&. Logger JP Drill Method	J Chief JP	17 Rig CME-45

The stratification lines represent the approximate boundary between soil types and the transition may be gradual.

5

8

61

L

15

М

	CG	С	Inc	c .)	LOG OF TEST PIT Project Living Word Church CTH X & Future West High Drive Location Waukesha, Wisconsin 36 S. Curtis Rd, West Allis, WI 53214 (414) 443-2000, FAX (414) 443-20	Boring No.12Surface Elevation (ft)59.4Job No.CM16163Sheet1of10				
SAMPLE					VISUAL CLASSIFICATION	SOIL PROPERTIES				
No.	T Rec	Moist	N	Depth	and Remarks	qu (qa)	W	LL	PL H.P.'	
	E ^P (in.)			(ft) 	13" Black Clayey TOPSOIL (OL)	(tsf)				H.P.': (in.)
1	12	M	20		Medium Dense, Dark Brown to Brown Mottled SILT; Little Fine Sand and Gravel, Trace Topsoil	-				
2	9	W	43		Medium Dense to Dense, Brown Fine to Coarse SAND and GRAVEL; Trace Silt, Some Scattered Cobbles and Boulders (SP/GP)					
3	1	W	25							
4	5		36	⊢ <u> </u> 	1 년 동 동 동 동 문					
-		vv	50							
5	9	M	100/ 9"	- 10- ⊢ └ └ └ └ └	Very Dense, Light Brown Sandy SILT; Some Clay, Little Fine to Coarse Gravel (ML)					
					End of Boring at 15 ft Backfilled with Bentonite Chips	SENERA	LNC	TES		
Time Dept	e Drill e After h to W h to Ca	Drillin ater		.5'	Driller J	1/17 End &J Chief IP Editor 1 2.25'' B	AS	R	ig CI	ME-45

The stratification lines represent the approximate boundary between soil types and the transition may be gradual.

CGC, Inc.

LOG OF TEST BORING General Notes

DESCRIPTIVE SOIL CLASSIFICATION

Grain Size Terminology

Soil Fraction	Particle Size U.	S. Standard Sieve Size
Boulders Cobbles		3" to 12"
	4.76 mm to ¾"	#4 to ¾"
	0.42 to mm to 2.00 mm	#40 to #10
Silt		Smaller than #200

Plasticity characteristics differentiate between silt and clay.

General Terminology

Relative Density

Physical Characteristics	Term	"N" Value
Color, moisture, grain shape, fineness, etc.	Very Loose	0 - 4
Major Constituents	Loose	4 - 10
Clay, silt, sand, gravel	Medium Den	se10 - 30
Structure	Dense	30 - 50
Laminated, varved, fibrous, stratified, cemented, fissured, etc.	Very Dense	Over 50
Geologic Origin		
Glacial, alluvial, eollan, residual, etc.		

Relative Proportions Of Cohesionless Soils

Proportional	Defining Range by
Term	Percentage of Weight
Trace	
Little	
Some	12% - 35%
And	

Organic Content by Combustion Method

Soil Description	Loss on Ignition
Non Organic	Less than 4%
Organic Silt/Clay	4 - 12%
Sedimentary Peat	
Fibrous and Woody P	eat More than 50%

Consistency

Term	q _u -tons/sq. ft
Very Soft	0.0 to 0.25
	0.25 to 0.50
Medium	0.50 to 1.0
Stiff	1.0 to 2.0
Very Stiff	2.0 to 4.0
	Over 4.0

Plasticity

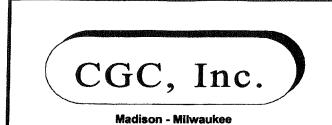
Term	Plastic index
None to Slight	0 - 4
Slight	5 - 7
Medium	8 - 22
High to Very Hig	h Over 22

The penetration resistance, N, is the summation of the number of blows required to effect two successive 6" penetrations of the 2" split-barrel sampler. The sampler is driven with a 140 lb. weight failing 30" and is seated to a depth of 6" before commencing the standard penetration test.

SYMBOLS

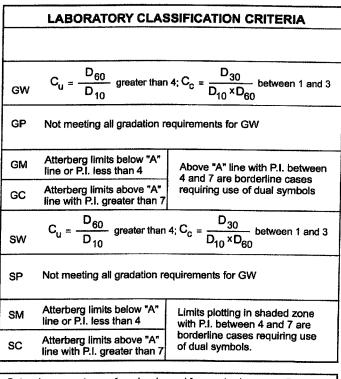
Drilling and Sampling

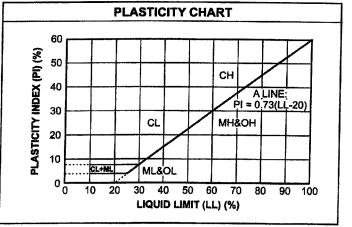
CS - Continuous Sampling RC - Rock Coring: Size AW, BW, NW, 2"W **RQD - Rock Quality Designation RB – Rock Bit/Roller Bit** FT - Fish Tail DC - Drove Casing C - Casing: Size 2 1/2", NW, 4", HW CW - Clear Water **DM - Drilling Mud** HSA - Hollow Stem Auger FA - Flight Auger HA - Hand Auger COA - Clean-Out Auger SS - 2" Dia. Split-Barrel Sample 2ST - 2" Dia. Thin-Walled Tube Sample 3ST - 3" Dia. Thin-Walled Tube Sample PT - 3" Dia. Piston Tube Sample AS – Auger Sample WS - Wash Sample **PTS – Peat Sample PS – Pitcher Sample** NR - No Recovery S - Sounding PMT - Borehole Pressuremeter Test VS - Vane Shear Test WPT - Water Pressure Test


Laboratory Tests

 $\begin{array}{l} q_a - \text{Penetrometer Reading, tons/sq ft} \\ q_a - \text{Unconfined Strength, tons/sq ft} \\ W - \text{Moisture Content, } \% \\ \text{LL} - \text{Liquid Limit, } \% \\ \text{PL} - \text{Plastic Limit, } \% \\ \text{SL} - \text{Shrinkage Limit, } \% \\ \text{LI} - \text{Loss on Ignition} \\ \text{D} - \text{Dry Unit Weight, Ibs/cu ft} \\ \text{pH} - \text{Measure of Soil Alkalinity or Acidity} \\ \text{FS} - \text{Free Swell, } \% \end{array}$

Water Level Measurement


✓ - Water Level at Time Shown
 NW -- No Water Encountered
 WD -- While Drilling
 BCR -- Before Casing Removal
 ACR -- After Casing Removal
 CW -- Cave and Wet
 CM -- Caved and Moist


Note: Water level measurements shown on the boring logs represent conditions at the time indicated and may not reflect static levels, especially in cohesive soils.

UNIFIED SOIL CLASSIFICATION SYSTEM

UNIFIED SC	DIL CLAS	SIFICATION AND SYMBOL CHART
<i>(</i>		ARSE-GRAINED SOILS
(more that		aterial is larger than No. 200 sieve size.) n Gravels (Less than 5% fines)
GRAVELS	GW	Wolf graded gravels, gravel pand
More than 50% of coarse	Coord GP	Poorly-graded gravels, gravel-sand mixtures, little or no fines
fraction larger than No. 4	Grav	els with fines (More than 12% fines)
sieve size	SOC GM	Silty gravels, gravel-sand-silt mixtures
	GC	Clayey gravels, gravel-sand-clay mixtures
	Clear	Sands (Less than 5% fines)
SANDS	sw	Well-graded sands, gravelly sands, little or no fines
50% or more of coarse	SP	Poorly graded sands, gravelly sands, little or no fines
fraction smaller than No. 4	Sands	s with fines (More than 12% fines)
sieve size	SM	Silty sands, sand-silt mixtures
	sc	Clayey sands, sand-clay mixtures
	FINE	-GRAINED SOILS
(50% or m	ore of mate	rial is smaller than No. 200 sieve size.)
SILTS	ML	Inorganic silts and very fine sands, rock flour, silty of clayey fine sands or clayey silts with slight plasticity
CLAYS Liquid limit less than	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
50%	OL	Organic silts and organic silty clays of low plasticity
SILTS AND	мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
CLAYS Liquid limit 50%	СН	Inorganic clays of high plasticity, fat clays
or greater	он	Organic clays of medium to high plasticity, organic silts
HIGHLY ORGANIC SOILS	<u>∛4</u> <u>6</u> ⊉ РТ <u>≪4</u>	Peat and other highly organic soils

APPENDIX C

SOIL EVALUATION-STORM FORM

Wisconsin D Division of S					- STORM 82.365 & 85, Wis. A	dm. Code	Page	1	of1
						County		Wauke	sha
		lan on paper not less than 8 to: vertical and horizontal				Parcel I.D.			
percent slop	pe, scale o	r dimensions, north arrow, a	and BM referenced to near	est road.		Review by			Date
		Please print all inform							
Property O		formation you provide may be use	d for secondary purposes (Privac	y Law, s.15.04	(1) (m)). Property Locat	ion			
Livina Word	d Evangelic	al Lutheran Church, Inc.							
, in the second se		illing Address			Govt. Lot Lot #	Block #	NW 1/4 S 2 CSM#	20 T 6 N R	17 E
2712 Susse		aning Address			2011				
City		State	Zip Code Phone	Number			10680		Nacusat Dand
City Waukesha		WI	53188	Tumber	XCity	Village	Town		Nearest Road
L					Waukesha				CTH X
Drainage a	rea:		sq. ftacres		Hydraulic Appl	ication Test Me	thod		
Optional:	uitable for	· (check all that apply)					X Morpho	logical Ev	aluation
	rigation	Bioretention	n trench	Trench(es)				- J	
				1_			Double-	Ring Infilt	rometer
	ain Garde	n Grassed Sw	/ale	Reuse			Other (S	Specify)	
In	filtration f	rench X SDS (>15' w	ride) Other						
		X Boring							
11 0	bs. #		urface Elev. 61.4	ft	Depth to	limiting factor	<u>60</u> in.	r	
	Dauth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock	Hydraulic App. Rate Inches/Hr
Horizon	Depth in.	Munsell	Qu. Sz. Cont. Color	Texture	Gr. Sz. Sh.		boundary	Frag.	
1	0-14	10YR2/2	None	SICL	1fsbk	mfr	as	<5	0.04
2	14-42	10YR3/3 & 4/4	c1d 10YR2/2 & 6/2	SIC	2fsbk	mfi	CW	<5	0.07
3	42-144	10YR6/6	None	GRVS	Osg	mlo	cw	35-<60	3.60
4	144-180	10YR7/3	None	SICL	0m	mefi		<15	0.04
		Groundwater encountered	@ 60 in. while drilling.						
		anna dalimini dalimini dali dali dali dali dali dali dali dal							
[] []	<u> </u>	XBoring		1		- I		1	
12 0	bs. #		urface Elev. 59.4	ft	Depth to	limiting factor	42 in.		
[]				-			D	% Rock	Hydraulic App. Rate
Horizon	Depth in.	Dominant Color Munsell	Redox Description Qu. Sz. Cont. Color	Texture	Structure Gr. Sz. Sh.	Consistence	Boundary	Frag.	Inches/Hr
1	0-13	10YR2/2	None	SICL	1fsbk	mfr	as	<5	0.04
2	13-24	10YR3/3 & 6/6	c1d 10YR2/2 & 6/2	SIC	2fsbk	mfi	CW	<5	0.07
3	24-144	10YR6/4	None	GRVS	0sg	mlo	CW	35-<60	3.60
4	144-180	10YR7/3	None	SICL	0m	mefi		<15	0.04
		Groundwater encountered							
		c.ounumator choountered	es ta in white drining.						
CST/PSS N	ame (Plea	se Print)		Sigņature	I				CST Number
Nathan I. Sp			++	MIA	<u> </u>	an System Patient Rev			1091739
			Na	unan		aluation Condu	icted	Tal	ephone Number
Address					/ Date LV			rei	
336 S. Curti	s Road, W	est Allis, WI 53214				1/24/17		(414) 443-2000

APPENDIX D

DOCUMENT QUALIFICATIONS

/

APPENDIX D DOCUMENT QUALIFICATIONS

I. GENERAL RECOMMENDATIONS/LIMITATIONS

CGC, Inc. should be provided the opportunity for a general review of the final design and specifications to confirm that earthwork and foundation requirements have been properly interpreted in the design and specifications. CGC should be retained to provide soil engineering services during excavation and subgrade preparation. This will allow us to observe that construction proceeds in compliance with the design concepts, specifications and recommendations, and also will allow design changes to be made in the event that subsurface conditions differ from those anticipated prior to the start of construction. CGC does not assume responsibility for compliance with the recommendations in this report unless we are retained to provide construction testing and observation services. This report has been prepared in accordance with generally accepted soil and foundation engineering practices and no other warranties are expressed or implied. The opinions and recommendations submitted in this report are based on interpretation of the subsurface information revealed by the test borings indicated on the location plan. The report does not reflect potential variations in subsurface conditions between or beyond these borings. Therefore, variations in soil conditions can be expected between the boring locations and fluctuations of groundwater levels may occur with time. The nature and extent of the variations may not become evident until construction.

II. IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL ENGINEERING REPORT

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes. While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. *No one except you* should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one - not even you* - should apply the report for any purpose or project except the one originally contemplated.

READ THE FULL REPORT

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A GEOTECHNICAL ENGINEERING REPORT IS BASED ON A UNIQUE SET OF PROJECT-SPECIFIC FACTORS

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, *do not rely on a geotechnical engineering report* that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical report include those that affect:

- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,
- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes - even minor ones - and request an assessment of their impact. CGC cannot accept responsibility or liability for problems that occur because our reports do not consider developments of which we were not informed.

SUBSURFACE CONDITIONS CAN CHANGE

A geotechnical engineering report is based on conditions that existed at the time the geotechnical engineer performed the study. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

MOST GEOTECHNICAL FINDINGS ARE PROFESSIONAL OPINION

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgement to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ - sometimes significantly - from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A REPORT'S RECOMMENDATIONS ARE NOT FINAL

Do not over-rely on the confirmation-dependent recommendations included in your report. Those confirmation-dependent recommendations are not final, because geotechnical engineers develop them principally from judgement and opinion. Geotechnical engineers can finalize their recommendations only by observing actual subsurface conditions revealed during construction. CGC cannot assume responsibility or liability for the report's confirmation-dependent recommendations if we do not perform the geotechnical-construction observation required to confirm the recommendations' applicability.

A GEOTECHNICAL ENGINEERING REPORT IS SUBJECT TO MISINTERPRETATION

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Constructors can also misinterpret a geotechnical engineering report. Confront that risk by having CGC participate in prebid and preconstruction conferences, and by providing geotechnical construction observation.

DO NOT REDRAW THE ENGINEER'S LOGS

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

GIVE CONSTRUCTORS A COMPLETE REPORT AND GUIDANCE

Some owners and design professionals mistakenly believe they can make constructors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give constructors the complete geotechnical engineering report, but preface it with a clearly written letter of transmittal. In that letter, advise constructors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. Be sure constructors have sufficient time to perform additional study. Only then might you be in a position to give constructors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

READ RESPONSIBILITY PROVISIONS CLOSELY

Some clients, design professionals, and constructors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineer's responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

ENVIRONMENTAL CONCERNS ARE NOT COVERED

The equipment, techniques, and personnel used to perform an *environmental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

OBTAIN PROFESSIONAL ASSISTANCE TO DEAL WITH MOLD

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, many mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant; none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

RELY ON YOUR GEOTECHNICAL ENGINEER FOR ADDITIONAL ASSISTANCE

Membership in the Geotechnical Business Council (GBC) of Geoprofessional Business Association exposes geotechnical engineers to a wide array of risk confrontation techniques that can be of genuine benefit for everyone involved with a construction project. Confer with CGC, a member of GBC, for more information.

Modified and reprinted with permission from:

Geotechnical Business Council of the Geoprofessional Business Association 8811 Colesville Road, Suite G 106 Silver Spring, MD 20910

APPENDIX E

RECOMMENDED COMPACTED FILL SPECIFICATIONS

APPENDIX E

CGC, INC.

RECOMMENDED COMPACTED FILL SPECIFICATIONS

General Fill Materials

Proposed fill shall contain no vegetation, roots, topsoil, peat, ash, wood or any other non-soil material which by decomposition might cause settlement. Also, fill shall never be placed while frozen or on frozen surfaces. Rock, stone or broken concrete greater than 6 in. in the largest dimension shall not be placed within 10 ft of the building area. Fill used greater than 10 ft beyond the building limits shall not contain rock, boulders or concrete pieces greater than a 2 sq ft area and shall not be placed within the final 2 ft of finish subgrade or in designated utility construction areas. Fill containing rock, boulders or concrete pieces should include sufficient finer material to fill voids among the larger fragments.

Special Fill Materials

In certain cases, special fill materials may be required for specific purposes, such as stabilizing subgrades, backfilling undercut excavations or filling behind retaining walls. For reference, WisDOT gradation specifications for various types of granular fill are attached in Table 1.

Placement Method

The approved fill shall be placed, spread and leveled in layers generally not exceeding 10 in. in thickness before compaction. The fill shall be placed at a moisture content capable of achieving the desired compaction level. For clay soils or granular soils containing an appreciable amount of cohesive fines, moisture conditioning will likely be required.

It is the Contractor's responsibility to provide all necessary compaction equipment and other grading equipment that may be required to attain the specified compaction. Hand-guided vibratory or tamping compactors will be required whenever fill is placed adjacent to walls, footings, columns or in confined areas.

Compaction Specifications

Maximum dry density and optimum moisture content of the fill soil shall be determined in accordance with modified Proctor methods (ASTM D1557). The recommended field compaction as a percentage of the maximum dry density is shown in Table 2. Note that these compaction guidelines would generally not apply to coarse gravel/stone fill. Instead, a method specification would apply (e.g., compact in thin lifts with a vibratory compactor until no further consolidation is evident).

Testing Procedures

Representative samples of proposed fill shall be submitted to CGC, Inc. for optimum moisture-maximum density determination (ASTM D1557) prior to the start of fill placement. The sample size should be approximately 50 lb.

CGC, Inc. shall be retained to perform field density tests to determine the level of compaction being achieved in the fill. The tests shall generally be conducted on each lift at the beginning of fill placement and at a frequency mutually agreed upon by the project team for the remainder of the project.

Table 1Gradation of Special Fill Materials

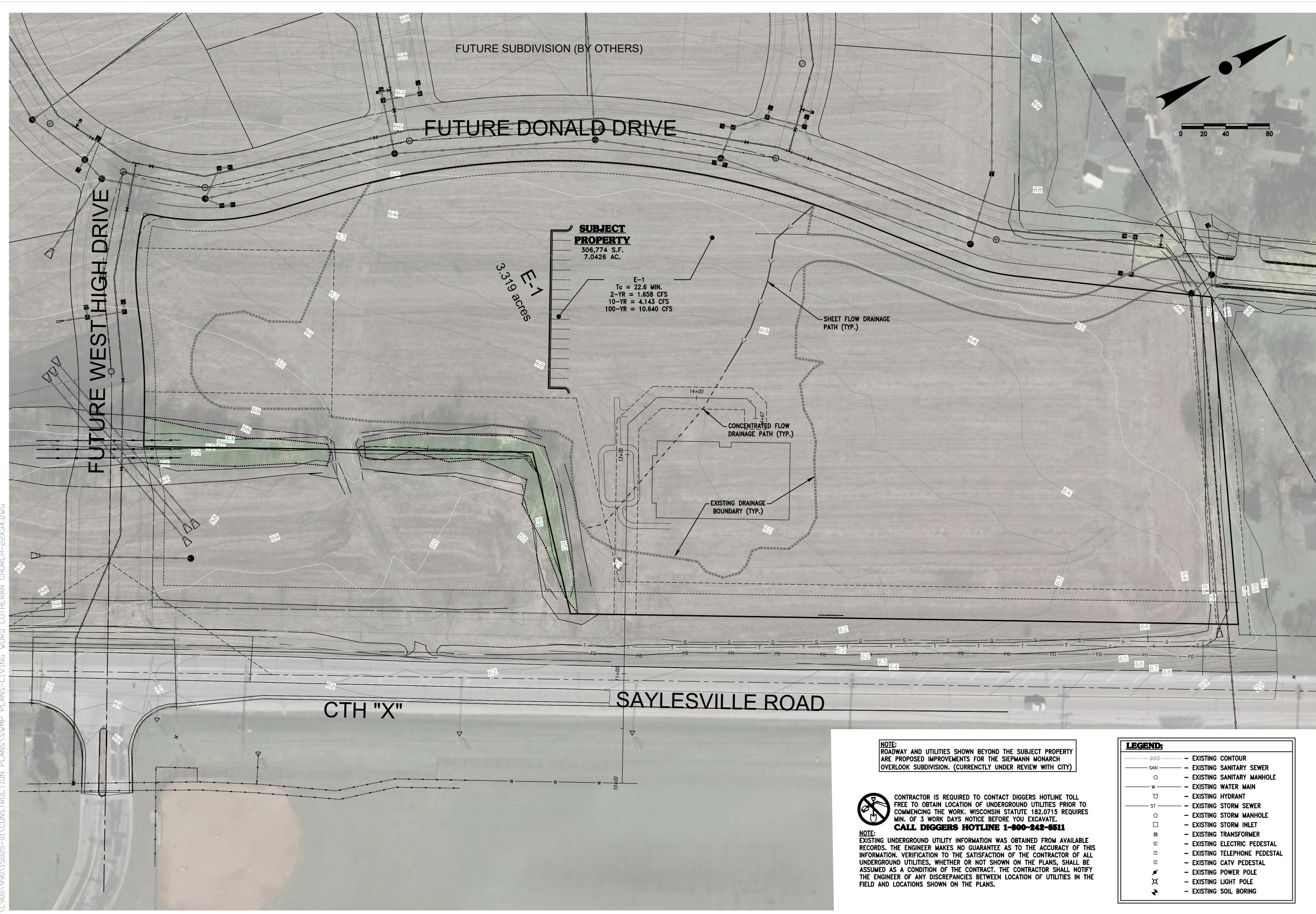
Material	WisDOT Section 311	WisDOT Section 312	W	isDOT Section 3	305	WisDOT S	Section 209	WisDOT Section 210
	Breaker Run	Select Crushed Material	3-in. Dense Graded Base	1 1/4-in. Dense Graded Base	3/4-in. Dense Graded Base	Grade 1 Granular Backfill	Grade 2 Granular Backfill	Structure Backfill
Sieve Size				Percent Pa	ssing by Weigh	t		
6 in.	100							
5 in.		90-100						
3 in.			90-100			11 V		100
1 1/2 in.		20-50	60-85					
1 1/4 in.				95-100				
1 in.					100			
3/4 in.			40-65	70-93	95-100			
3/8 in.				42-80	50-90	· · · · · · · · · · · · · · · · · · ·		
No. 4			15-40	25-63	35-70	100 (2)	100 (2)	25-100
No. 10	_	0-10	10-30	16-48	15-55			
No. 40			5-20	8-28	10-35	75 (2)		
No. 100						15 (2)	30 (2)	
No. 200			2-12	2-12	5-15	8 (2)	15 (2)	15 (2)

Notes:

1. Reference: Wisconsin Department of Transportation Standard Specifications for Highway and Structure Construction.

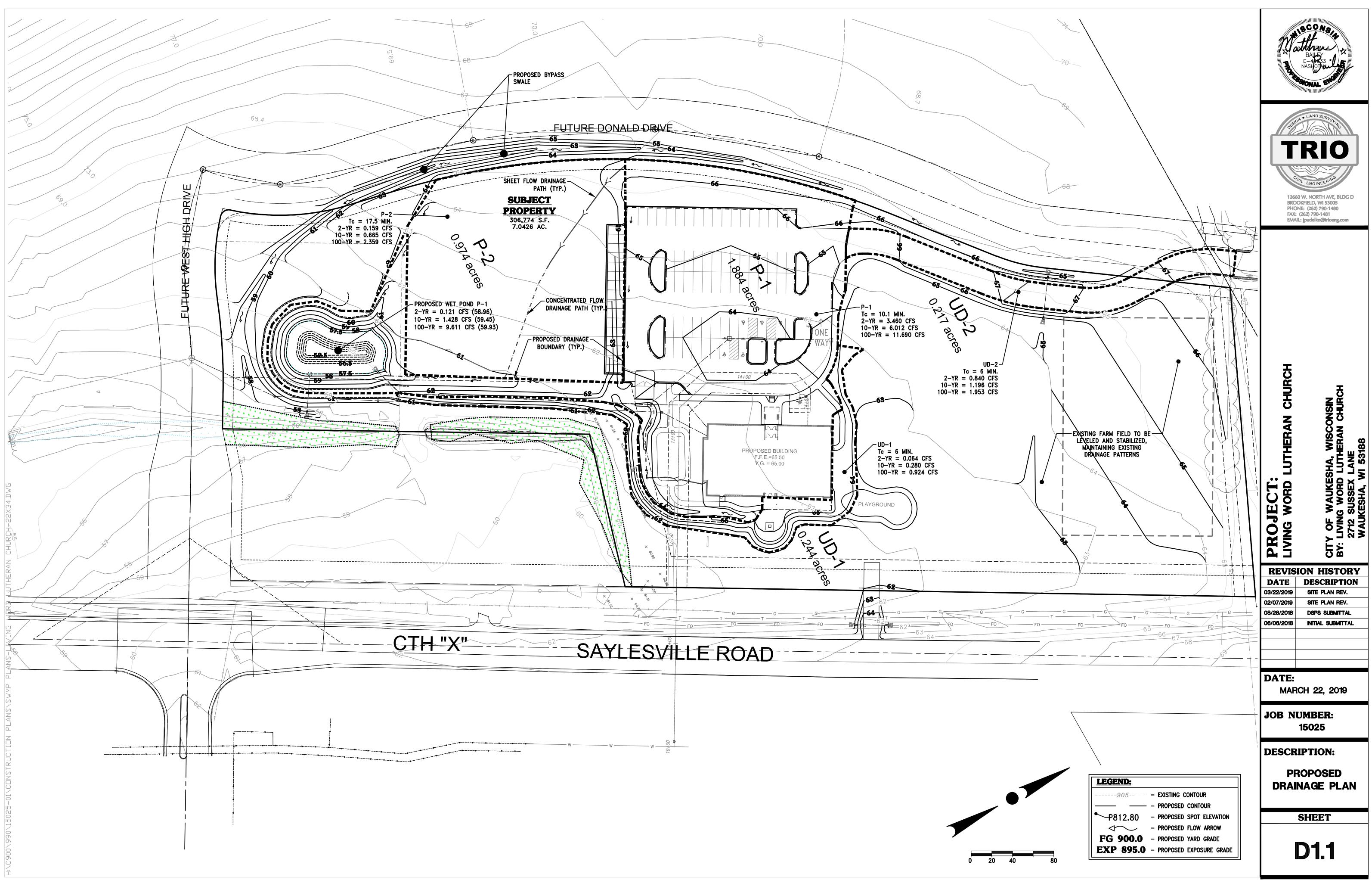
- 2. Percentage applies to the material passing the No. 4 sieve, not the entire sample.
- 3. Per WisDOT specifications, both breaker run and select crushed material can include concrete that is 'substantially free of steel, building materials and other deleterious material'.

Table 2Compaction Guidelines

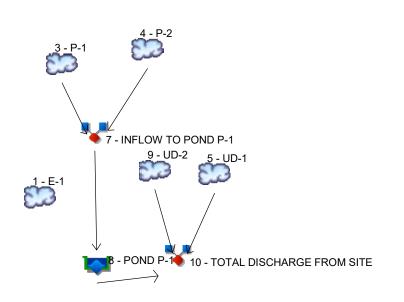

	Percent Compaction (1)		
Area	Clay/Silt	Sand/Gravel	
Within 10 ft of building lines			
Footing bearing soils	93 - 95	95	
Under floors, steps and walks			
- Lightly loaded floor slab	90	90	
- Heavily loaded floor slab and thicker fill zones	92	95	
Beyond 10 ft of building lines			
Under walks and pavements			
- Less than 2 ft below subgrade	92	95	
- Greater than 2 ft below subgrade	90	90	
Landscaping	85	90	

Notes:

1. Based on Modified Proctor Dry Density (ASTM D 1557)


APPENDIX 2

Existing & Proposed Drainage Area Maps Rain Garden Details


BAL E-4 NASH	
12660 W. NO BROOKFIELD PHONE: (262) FAX: (262) 75	RIO BINEERING ORTH AVE, BLDC D WI 53005 2) 790-1480
DATE DE	CITY OF WAUKESHA, WISCONSIN BY: LIVING WORD LUTHERAN CHURCH 2712 SUSSEX LANE WAUKESHA, WI 53188 E LIAN LEAN E LIAN LEAN E LIAN LEAN E LIAN LEAN
02/07/2019 SIT 08/28/2018 DS 06/06/2018 NIT	E PLAN REV. E PLAN REV. PS SUBMITTAL TIAL SUBMITTAL
DATE: MARCH 2 JOB NUME 150	BER:
	ION: IG SITE AN
	EET

LEGEND:	
905	EXISTING CONTOUR
SAN	— – EXISTING SANITARY SEWER
0	– EXISTING SANITARY MANHOLE
w	— – EXISTING WATER MAIN
Д	– EXISTING HYDRANT
ST	— – EXISTING STORM SEWER
0	- EXISTING STORM MANHOLE
	- EXISTING STORM INLET
	- EXISTING TRANSFORMER
Ε	– EXISTING ELECTRIC PEDESTAL
Ξ	- EXISTING TELEPHONE PEDESTAL
C	– EXISTING CATV PEDESTAL
ø	- EXISTING POWER POLE
¤	- EXISTING LIGHT POLE
4	- EXISTING SOIL BORING

APPENDIX 3

Hydraflow Calculations

Legend

<u>Hyd.</u>	<u>Origin</u>	Description
1	SCS Runoff	E-1
3	SCS Runoff	P-1
4	SCS Runoff	P-2
5	SCS Runoff	UD-1
7	Combine	INFLOW TO POND P-1
8	Reservoir	POND P-1
9	SCS Runoff	UD-2
10	Combine	TOTAL DISCHARGE FROM SITE

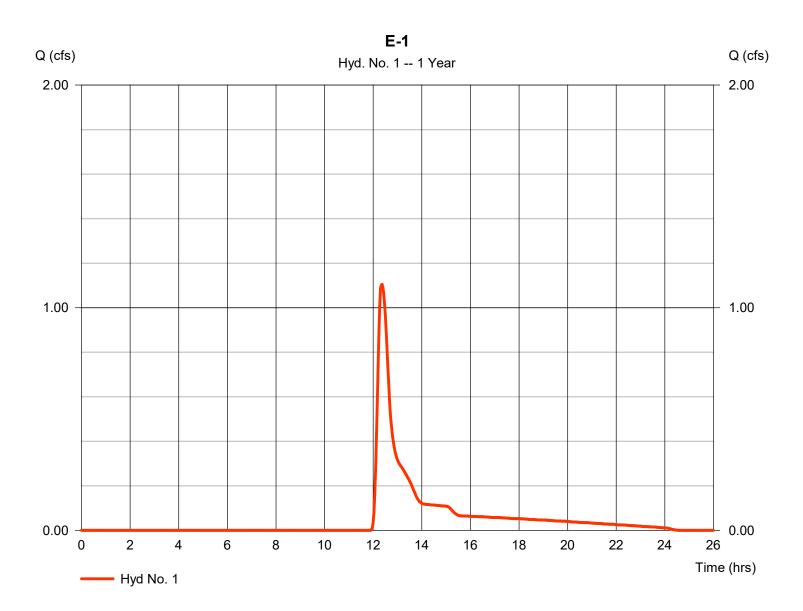
Project: \\Trio-data1\lobbys\WPDOCS\DOCUMENT\990\15025-01\284-Storm Water Managerindenyt @Bah220/129013-22_HYDRAFLOW

Hydrograph Return Period Recap Hydrafiow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

	Hydrograph	Inflow	Peak Outflow (cfs)						Hydrograph		
lo.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		1.105	1.658			4.143			10.64	E-1
3	SCS Runoff		2.785	3.460			6.012			11.69	P-1
4	SCS Runoff		0.080	0.159			0.665			2.359	P-2
5	SCS Runoff		0.023	0.064			0.280			0.924	UD-1
7	Combine	3, 4,	2.813	3.534			6.476			13.60	INFLOW TO POND P-1
8	Reservoir	7	0.107	0.121			1.428			9.611	POND P-1
9	SCS Runoff		0.740	0.840			1.196			1.953	UD-2
10	Combine	5, 8, 9	0.801	0.947			1.574			10.33	TOTAL DISCHARGE FROM SITE

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (acft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (acft)	Hydrograph Description
1	SCS Runoff	1.105	2	742	0.112				E-1
3	SCS Runoff	2.785	2	732	0.166				P-1
4	SCS Runoff	0.080	2	748	0.013				P-2
5	SCS Runoff	0.023	2	732	0.003				UD-1
7	Combine	2.813	2	732	0.179	3, 4,			INFLOW TO POND P-1
8	Reservoir	0.107	2	908	0.178	7	58.65	0.118	POND P-1
9	SCS Runoff	0.740	2	726	0.036				UD-2
\\ T r	in-data1\lobb				৩০০৯খনহনস্প		Fram Water M	an Scie lmer 13 D	1202202094903-22_HYDRAFLOW CA


3

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 1

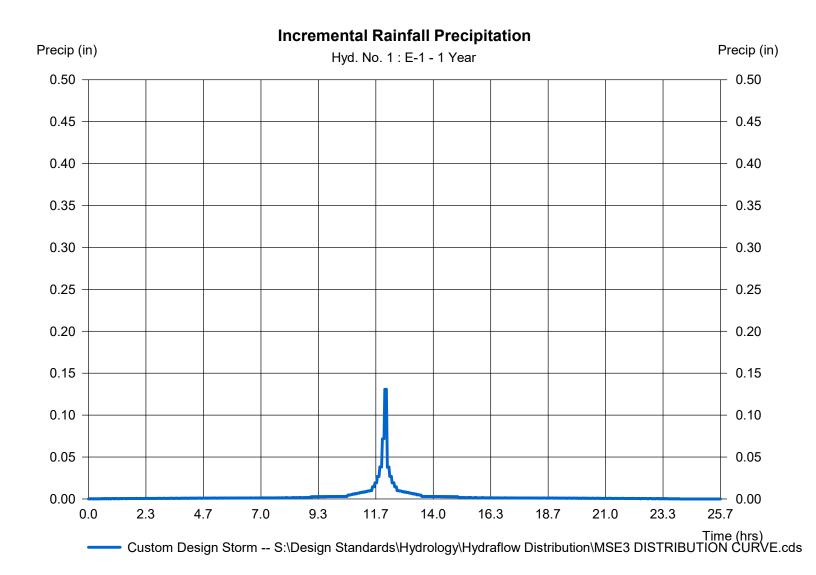
Hydrograph type	= SCS Runoff	Peak discharge	= 1.105 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.37 hrs
Time interval	= 2 min	Hyd. volume	= 0.112 acft
Drainage area	= 3.319 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.60 min
Total precip.	= 2.38 in	Distribution	= Custom
Storm duration	= S:\Design Standard	ls\Hydrology &haydeaffactroD istribut	ionnhM885⊒3 DISTRIBUTION CU

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

E-1

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.170 = 175.0 = 2.60 = 1.60		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 20.55	+	0.00	+	0.00	=	20.55
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 197.00 = 1.00 = Unpave =1.61	b	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 2.03	+	0.00	+	0.00	=	2.03
Channel Flow	0.00						
X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Wetted perimeter (ft) Channel slope (%) Manning's n-value	= 0.00 = 0.00 = 0.015		0.00 0.00 0.015		0.00 0.00 0.015		
Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.015 =0.00	+	0.00 0.00 0.015 0.00	+	0.00 0.00 0.015 0.00	=	0.00


Precipitation Report

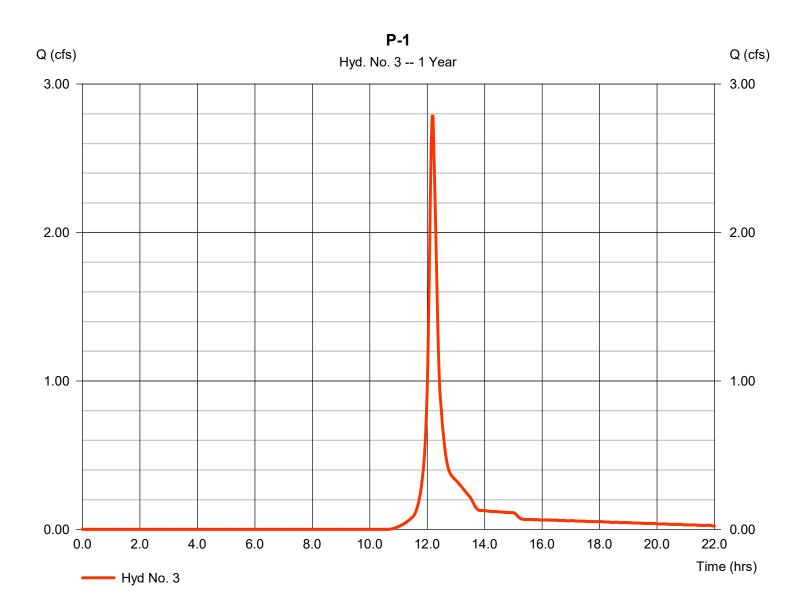
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

E-1

Storm Frequency	= 1 yrs	Time interval	= 2 min
Total precip.	= 2.3800 in	Distribution	= Custom
Storm duration	= S:\Design Standards\Hy	/drology\Hydraflow Dist	tribution\MSE3 DISTRIBUTION C

6


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 3

P-1

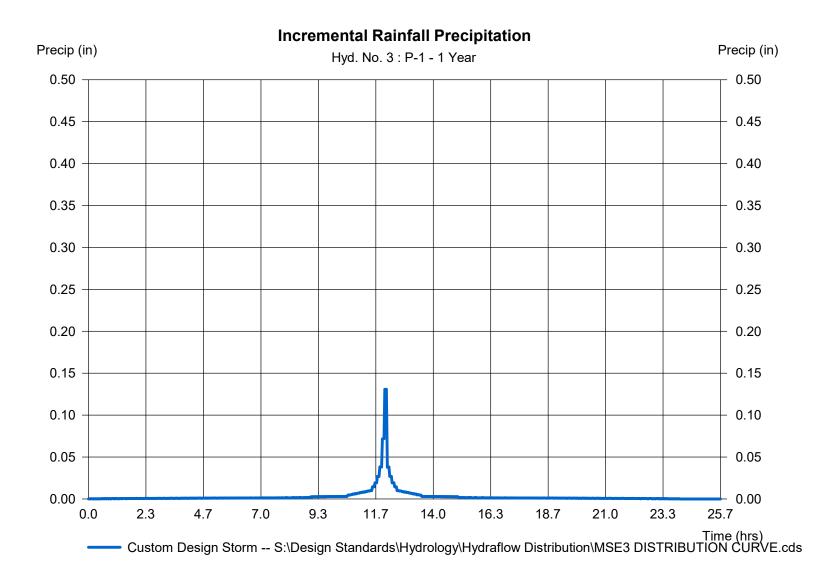
Hydrograph type	= SCS Runoff	Peak discharge	= 2.785 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.20 hrs
Time interval	= 2 min	Hyd. volume	= 0.166 acft
Drainage area	= 1.884 ac	Curve number	= 84
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.10 min
Total precip.	= 2.38 in	Distribution	= Custom
Storm duration	= S:\Design Standard	ds\Hydrology& hlypleaffaotro Distributi	.ion \ M83⊒3 DISTRIBUTION CU

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

P-1

Description	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 58.0 = 2.60 = 3.40		0.011 0.0 2.60 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 8.28	+	0.00	+	0.00	=	8.28
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 66.00 = 1.00 = Unpaved =1.61	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.68	+	0.00	+	0.00	=	0.68
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 1.23 = 3.93 = 0.50 = 0.013 =3.72		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})261.0		0.0		0.0		
Travel Time (min)	= 1.17	+	0.00	+	0.00	=	1.17
Total Travel Time, Tc							10.10 min


Precipitation Report

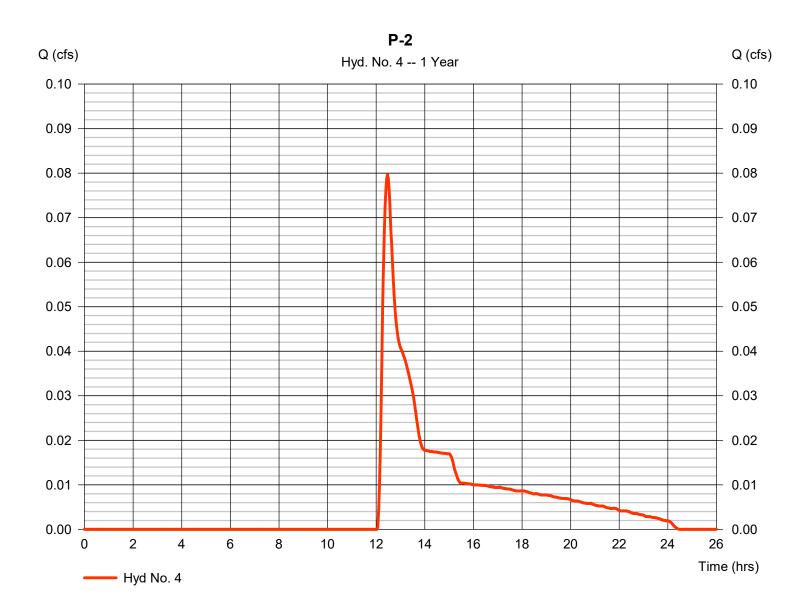
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

P-1

Storm Frequency	= 1 yrs	Time interval	= 2 min
Total precip.	= 2.3800 in	Distribution	= Custom
Storm duration	= S:\Design Standards\Hy	ydrology\Hydraflow Dist	tribution\MSE3 DISTRIBUTION C

9


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 4

P-2	
-----	--

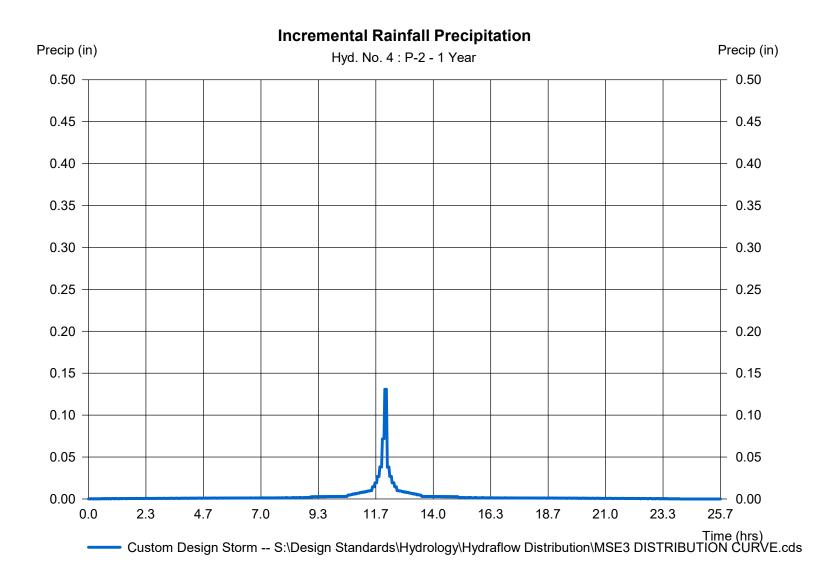
Hydrograph type	= SCS Runoff	Peak discharge	= 0.080 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.47 hrs
Time interval	= 2 min	Hyd. volume	= 0.013 acft
Drainage area	= 0.974 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.50 min
Total precip.	= 2.38 in	Distribution	= Custom
Storm duration	= S:\Design Standard	ds\Hydrolog y3haypleaffaotto Distributi	ionnaMasee3 DISTRIBUTION CU

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

P-2

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 120.0 = 2.60 = 2.70		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 16.25	+	0.00	+	0.00	=	16.25
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 239.00 = 3.70 = Unpaved =3.10	b	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.28	+	0.00	+	0.00	=	1.28
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							17.50 min


Precipitation Report

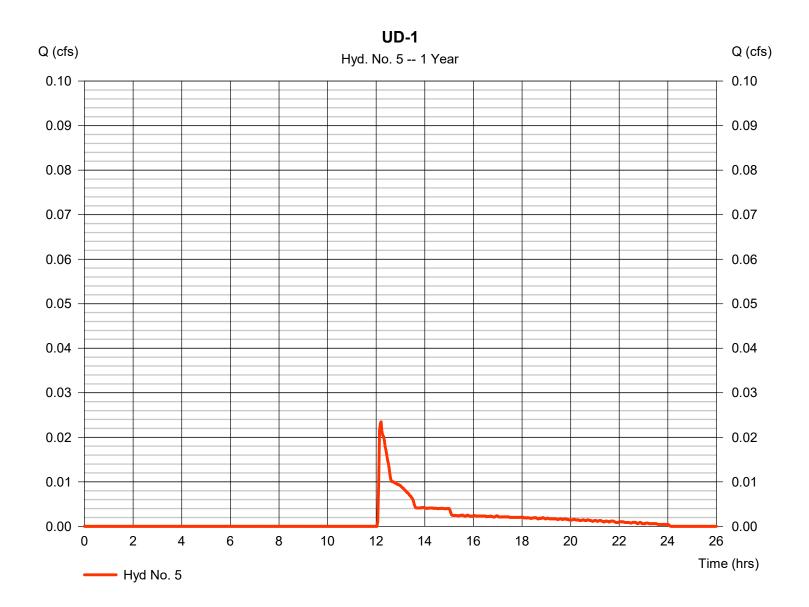
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

P-2

Storm Frequency	= 1 yrs	Time interval	= 2 min
Total precip.	= 2.3800 in	Distribution	= Custom
Storm duration	= S:\Design Standards\H	ydrology\Hydraflow Dis	tribution\MSE3 DISTRIBUTION C

Friday, 03 / 22 / 2019

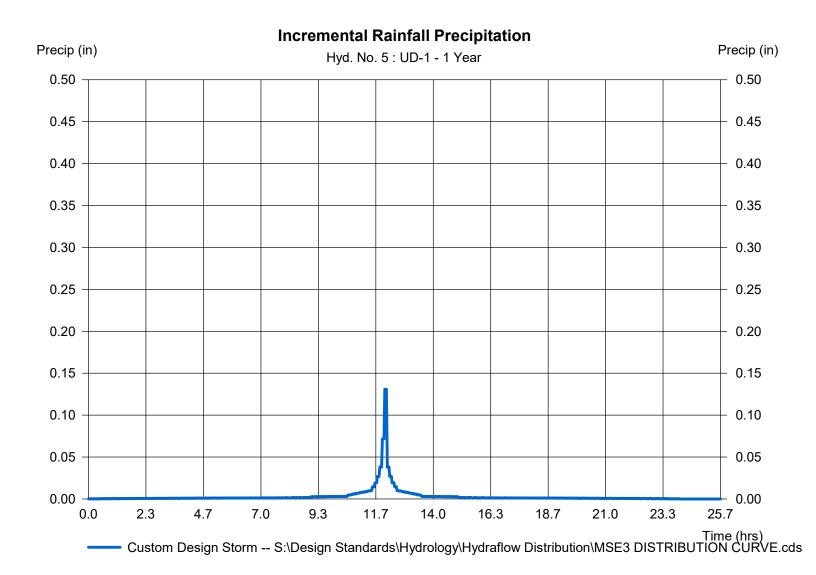

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 5

UD-1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.023 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.20 hrs
Time interval	= 2 min	Hyd. volume	= 0.003 acft
Drainage area	= 0.244 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.38 in	Distribution	= Custom
Storm duration	= S:\Design Standard	s\Hydrology& haydeaffactvo Distribut	ion†MASEE3 DISTRIBUTION CU

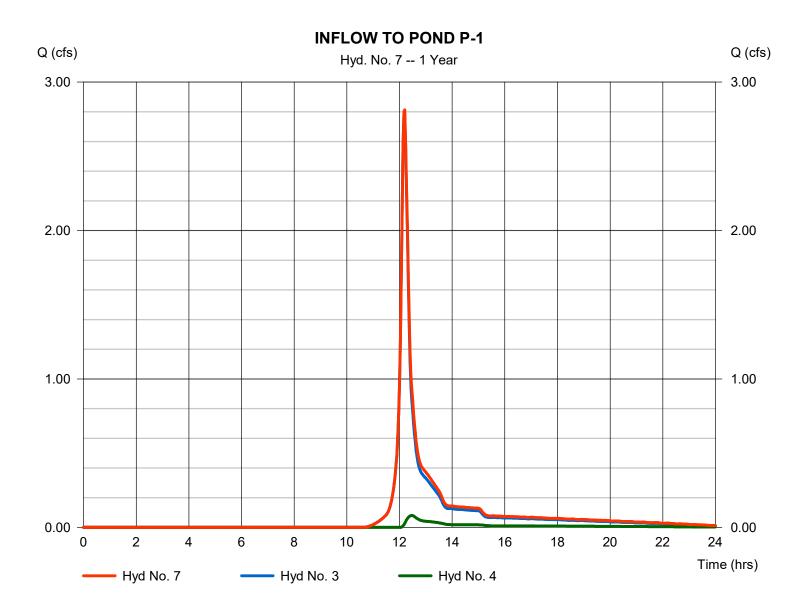

Precipitation Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

UD-1

Storm Frequency	= 1 yrs	Time interval	= 2 min
Total precip.	= 2.3800 in	Distribution	= Custom
Storm duration	= S:\Design Standards\H	ydrology\Hydraflow Dis	tribution\MSE3 DISTRIBUTION C



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 7

INFLOW TO POND P-1

Hydrograph type	= Combine	Peak discharge	= 2.813 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.20 hrs
Time interval	= 2 min	Hyd. volume	= 0.179 acft
Inflow hyds.	= 3, 4	Contrib. drain. area	= 2.858 ac

Friday, 03 / 22 / 2019

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 8

POND P-1

Hydrograph type	= Reservoir	Peak discharge	= 0.107 cfs
Storm frequency	= 1 yrs	Time to peak	= 15.13 hrs
Time interval	= 2 min	Hyd. volume	= 0.178 acft
Inflow hyd. No.	= 7 - INFLOW TO POND P-1	Max. Elevation	= 58.65 ft
Reservoir name	= POND P-1	Max. Storage	= 0.118 acft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Pond No. 1 - POND P-1

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 57.50 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (acft)	Total storage (acft)
0.00	57.50	3,039	0.000	0.000
0.50	58.00	4,461	0.043	0.043
1.50	59.00	5,596	0.115	0.158
2.50	60.00	6,862	0.143	0.301
3.50	61.00	8,332	0.174	0.475
3.75	61.25	8,726	0.049	0.524

Culvert / Orifice Structures

Weir Structures

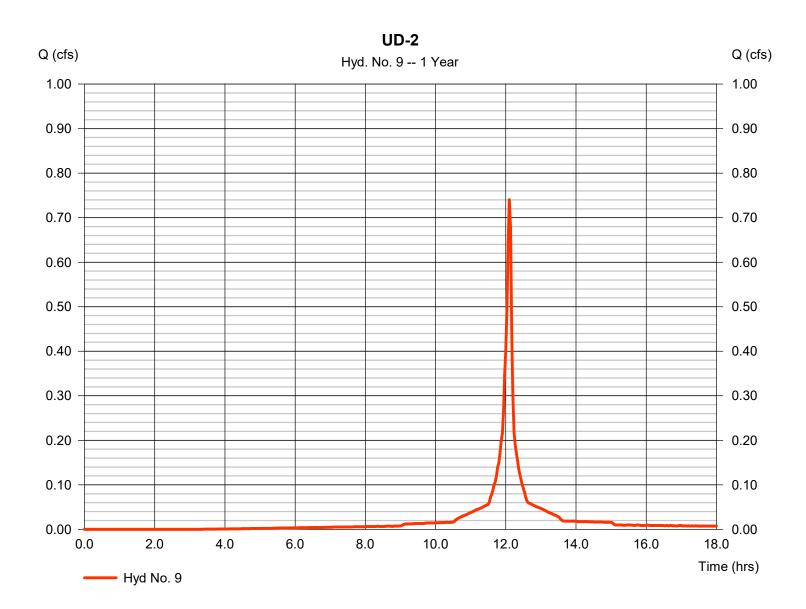
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 12.00	2.00	0.00	0.00	Crest Len (ft)	= 12.00	0.00	0.00	10.00
Span (in)	= 12.00	2.00	0.00	0.00	Crest El. (ft)	= 59.35	0.00	0.00	60.25
No. Barrels	= 2	1	0	0	Weir Coeff.	= 3.33	3.33	3.33	2.60
Invert EI. (ft)	= 57.50	57.50	0.00	0.00	Weir Type	= 1			Broad
Length (ft)	= 37.00	0.50	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.27	0.50	0.00	n/a					
N-Value	= .012	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Stage /	-	Jischarge											
Stage ft	Storage acft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0.000	57.50	0.00	0.00			0.00			0.00			0.000
0.05	0.004	57.55	0.01 oc	0.00 ic			0.00			0.00			0.004
0.10	0.009	57.60	0.02 oc	0.01 ic			0.00			0.00			0.015
0.15	0.013	57.65	0.03 oc	0.03 ic			0.00			0.00			0.027
0.20	0.017	57.70	0.04 oc	0.04 ic			0.00			0.00			0.036
0.25	0.021	57.75	0.05 oc	0.04 ic			0.00			0.00			0.043
0.30	0.026	57.80	0.05 oc	0.05 ic			0.00			0.00			0.049
0.35	0.030	57.85	0.06 oc	0.05 ic			0.00			0.00			0.054
0.40	0.034	57.90	0.06 oc	0.06 ic			0.00			0.00			0.059
0.45	0.039	57.95	0.07 oc	0.06 ic			0.00			0.00			0.063
0.50	0.043	58.00	0.07 oc	0.07 ic			0.00			0.00			0.067
0.60	0.054	58.10	0.08 oc	0.07 ic			0.00			0.00			0.075
0.70	0.066	58.20	0.08 oc	0.08 ic			0.00			0.00			0.081
0.80	0.077	58.30	0.09 oc	0.09 ic			0.00			0.00			0.088
0.90	0.089	58.40	0.10 oc	0.09 ic			0.00			0.00			0.093
1.00	0.100	58.50	0.10 oc	0.10 ic			0.00			0.00			0.099
1.10	0.112	58.60	0.11 oc	0.10 ic			0.00			0.00			0.104
1.20	0.123	58.70	0.12 oc	0.11 ic			0.00			0.00			0.109
1.30	0.135	58.80	0.12 oc	0.11 ic			0.00			0.00			0.114
1.40	0.146	58.90	0.13 oc	0.12 ic			0.00			0.00			0.119
1.50	0.158	59.00	0.13 oc	0.12 ic			0.00			0.00			0.123
1.60	0.172	59.10	0.14 oc	0.13 ic			0.00			0.00			0.127
1.70	0.187	59.20	0.14 oc	0.13 ic			0.00			0.00			0.132
1.80	0.201	59.30	0.14 oc	0.14 ic			0.00			0.00			0.136
1.90	0.215	59.40	0.60 oc	0.13 ic			0.45			0.00			0.579
2.00	0.229	59.50	2.44 oc	0.11 ic			2.32			0.00			2.433
2.10	0.244	59.60	5.09 oc	0.09 ic			4.99			0.00			5.088
2.20	0.258	59.70	8.07 oc	0.06 ic			8.01 s			0.00			8.068
2.30	0.272	59.80	8.95 oc	0.04 ic			8.91 s			0.00			8.953
2.40	0.286	59.90	9.50 oc	0.03 ic			9.47 s			0.00			9.498
2.50	0.301	60.00	9.93 oc	0.03 ic			9.90 s			0.00			9.927
2.60	0.318	60.10	10.30 oc	0.02 ic			10.28 s			0.00			10.30
2.70	0.336	60.20	10.64 oc	0.02 ic			10.62 s			0.00			10.64
2.80	0.353	60.30	10.96 oc	0.02 ic			10.93 s			0.29			11.24
2.90	0.370	60.40	11.26 oc	0.02 ic			11.24 s			1.51			12.77
3.00	0.388	60.50	11.56 oc	0.01 ic			11.53 s			3.25			14.79
3.10	0.405	60.60	11.84 oc	0.01 ic			11.81 s			5.38			17.21
											Continue	s on nev	t nage

POND P-1 Stage / Storage / Discharge Table

-	-	-											
Stage ft	Storage acft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
3.20	0.423	60.70	12.11 oc	0.01 ic			12.10 s			7.85			19.96
3.30	0.440	60.80	12.38 oc	0.01 ic			12.35 s			10.60			22.97
3.40	0.457	60.90	12.64 oc	0.01 ic			12.61 s			13.62			26.25
3.50	0.475	61.00	12.89 oc	0.01 ic			12.84 s			16.89			29.74
3.53	0.480	61.03	12.96 oc	0.01 ic			12.93 s			17.74			30.68
3.55	0.485	61.05	13.02 oc	0.01 ic			12.95 s			18.60			31.57
3.58	0.489	61.08	13.08 oc	0.01 ic			13.03 s			19.48			32.53
3.60	0.494	61.10	13.14 oc	0.01 ic			13.11 s			20.38			33.50
3.63	0.499	61.13	13.20 oc	0.01 ic			13.18 s			21.28			34.47
3.65	0.504	61.15	13.26 oc	0.01 ic			13.24 s			22.20			35.45
3.68	0.509	61.18	13.33 oc	0.01 ic			13.29 s			23.13			36.43
3.70	0.514	61.20	13.39 oc	0.01 ic			13.34 s			24.07			37.42
3.73	0.519	61.23	13.45 oc	0.01 ic			13.38 s			25.03			38.42
3.75	0.524	61.25	13.51 oc	0.01 ic			13.48 s			26.00			39.49

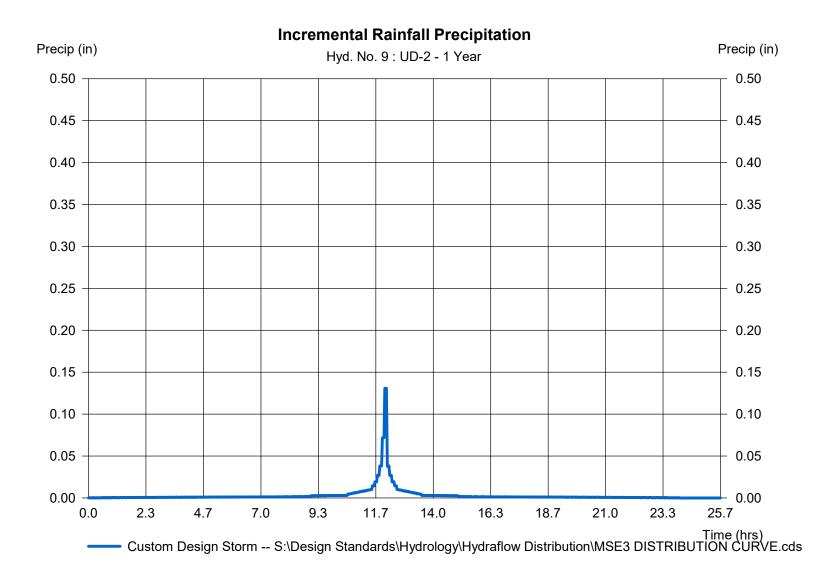

...End

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 9

Hydrograph type	= SCS Runoff	Peak discharge	= 0.740 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 0.036 acft
Drainage area	= 0.217 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.38 in	Distribution	= Custom
Storm duration	= S:\Design Standards	s\Hydrolog y3.haypleaffactvo Distributi	.ion★M488⊒3 DISTRIBUTION CU

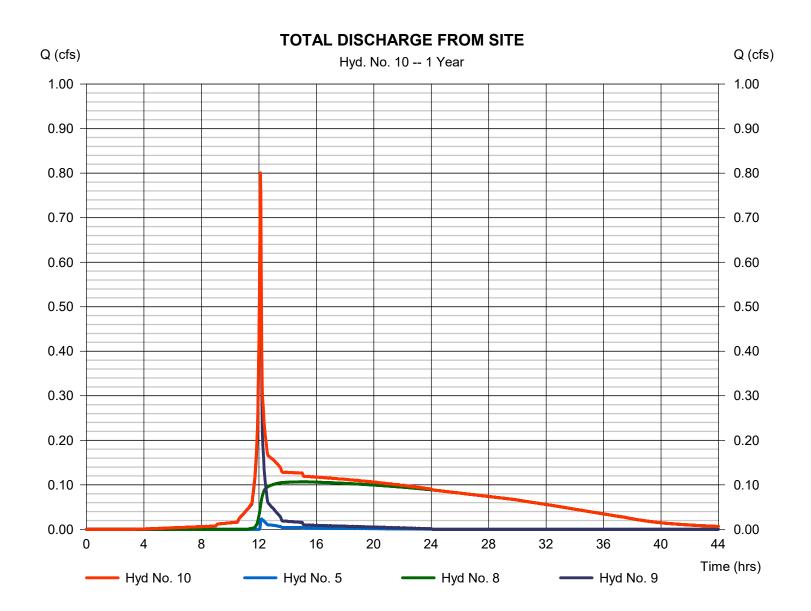

Precipitation Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 9

UD-2

Storm Frequency	= 1 yrs	Time interval	= 2 min
Total precip.	= 2.3800 in	Distribution	= Custom
Storm duration	= S:\Design Standards\H	ydrology\Hydraflow Dis	tribution\MSE3 DISTRIBUTION C


Friday, 03 / 22 / 2019

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 10

TOTAL DISCHARGE FROM SITE

Hydrograph type Storm frequency	= Combine = 1 yrs	Peak discharge Time to peak	= 0.801 cfs = 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 0.217 acft
Inflow hyds.	= 5, 8, 9	Contrib. drain. area	= 0.461 ac

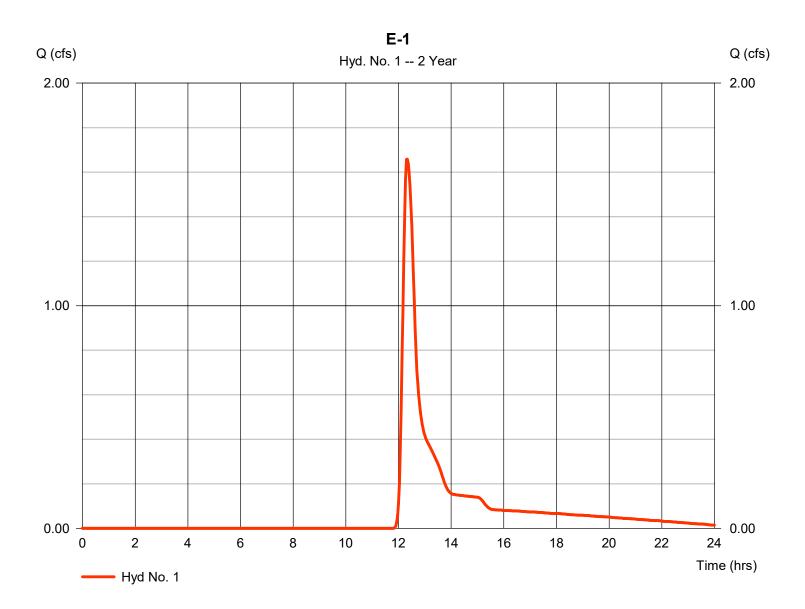
21

Friday, 03 / 22 / 2019

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (acft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (acft)	Hydrograph Description
1	SCS Runoff	1.658	2	740	0.155				E-1
3	SCS Runoff	3.460	2	730	0.205				P-1
4	SCS Runoff	0.159	2	744	0.021				P-2
5	SCS Runoff	0.064	2	728	0.005				UD-1
7	Combine	3.534	2	732	0.226	3, 4,			INFLOW TO POND P-1
8	Reservoir	0.121	2	910	0.225	7	58.96	0.153	POND P-1
9	SCS Runoff	0.840	2	726	0.042				UD-2
10	Combine	0.947	2	726	0.271	5, 8, 9			TOTAL DISCHARGE FROM SITE

\\Trio-data1\lobbys\WPDOCS\DOCUMENT\\$98\et5025-01102842-Steam Water Man & gielaner039/a2222004-03-22_HYDRAFLOW CALC_te

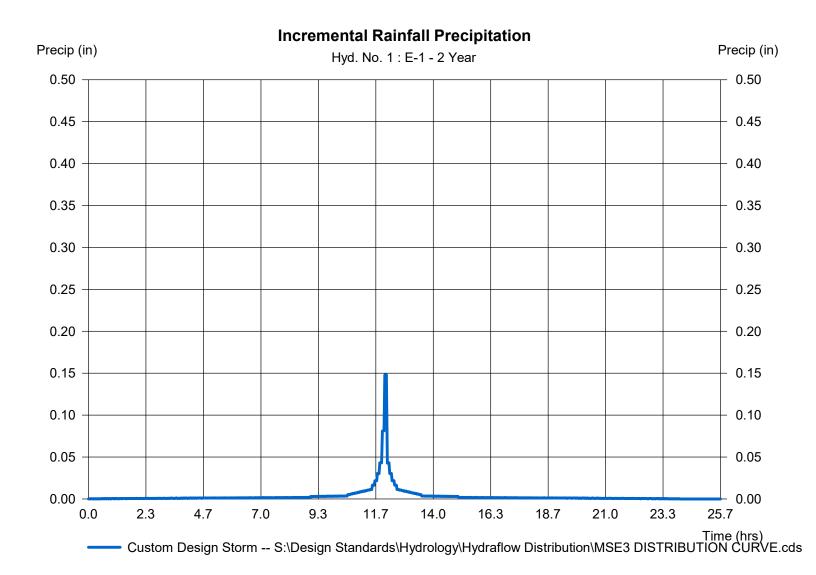

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 1

E-1

Hydrograph type	= SCS Runoff	Peak discharge	= 1.658 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.33 hrs
Time interval	= 2 min	Hyd. volume	= 0.155 acft
Drainage area	= 3.319 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.60 min
Total precip.	= 2.69 in	Distribution	= Custom
Storm duration	= S:\Design Standard	s\Hydrolog y3haypleaffaotto Distribut	ion \ M83⊒3 DISTRIBUTION CU

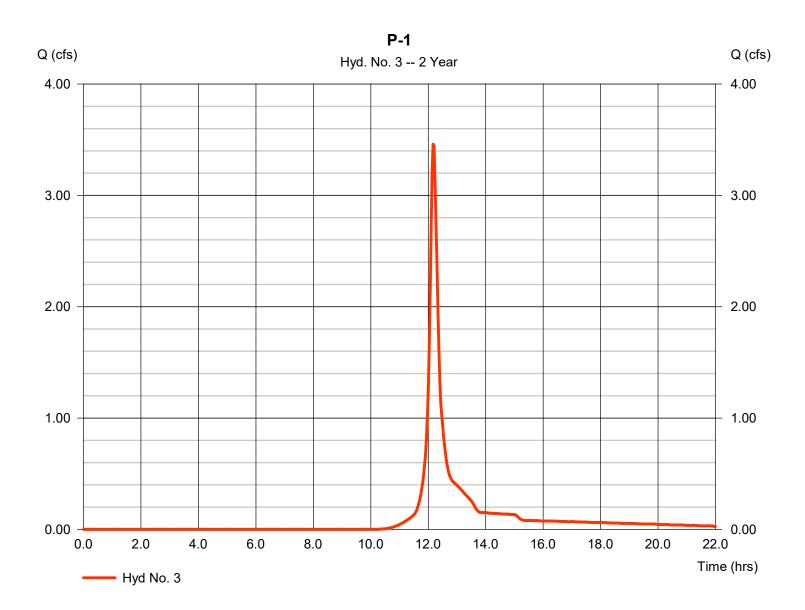


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

E-1

Storm Frequency	= 2 yrs	Time interval	= 2 min
Total precip.	= 2.6900 in	Distribution	= Custom
Storm duration	= S:\Design Standards\Hy	ydrology∖Hydraflow Dist	tribution\MSE3 DISTRIBUTION C

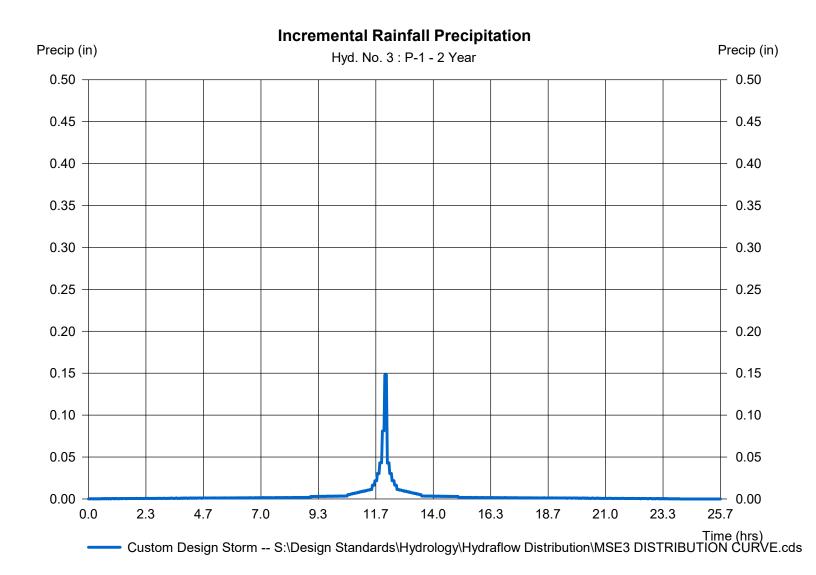

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 3

P-	1
- I	

Hydrograph type	= SCS Runoff	Peak discharge	= 3.460 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 0.205 acft
Drainage area	= 1.884 ac	Curve number	= 84
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.10 min
Total precip.	= 2.69 in	Distribution	= Custom
Storm duration	= S:\Design Standard	ls\Hydrolog y3haypleaffaotto Distribut	tion#MSEE3 DISTRIBUTION CU



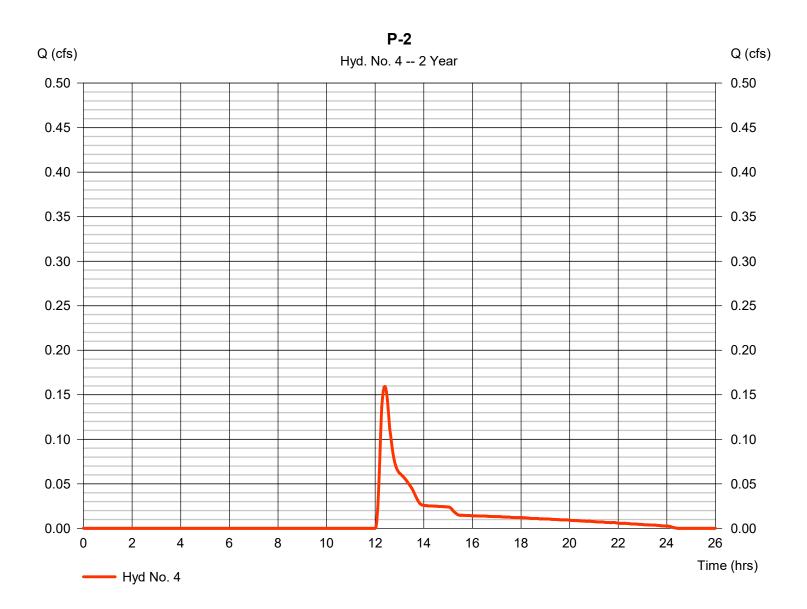
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

P-1

Storm Frequency	= 2 yrs	Time interval	= 2 min
Total precip.	= 2.6900 in	Distribution	= Custom
Storm duration	= S:\Design Standards\H	ydrology\Hydraflow Dist	tribution\MSE3 DISTRIBUTION C

26

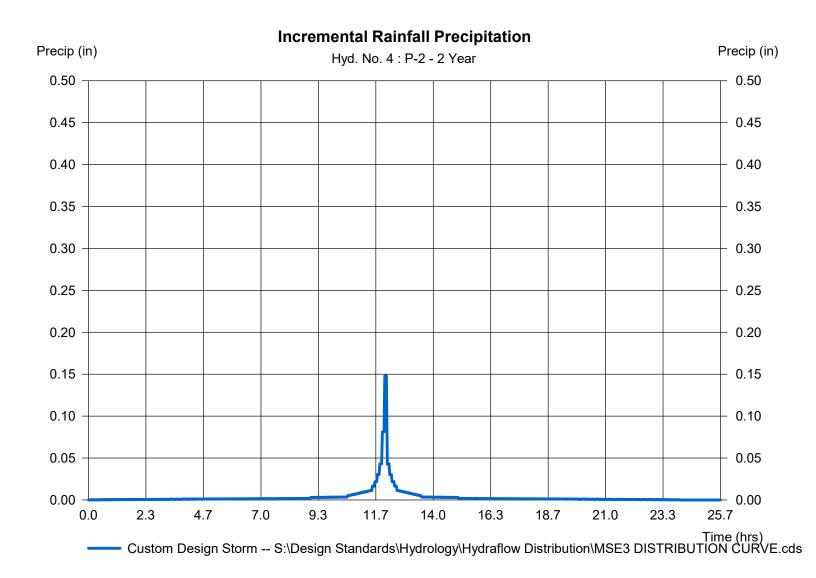

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 4

P-2	
-----	--

Hydrograph type	= SCS Runoff	Peak discharge	= 0.159 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.40 hrs
Time interval	= 2 min	Hyd. volume	= 0.021 acft
Drainage area	= 0.974 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.50 min
Total precip.	= 2.69 in	Distribution	= Custom
Storm duration	= S:\Design Standard	ls\Hydrolog y3haypleaffaotro Distribut	tion≒MASEE3 DISTRIBUTION CU

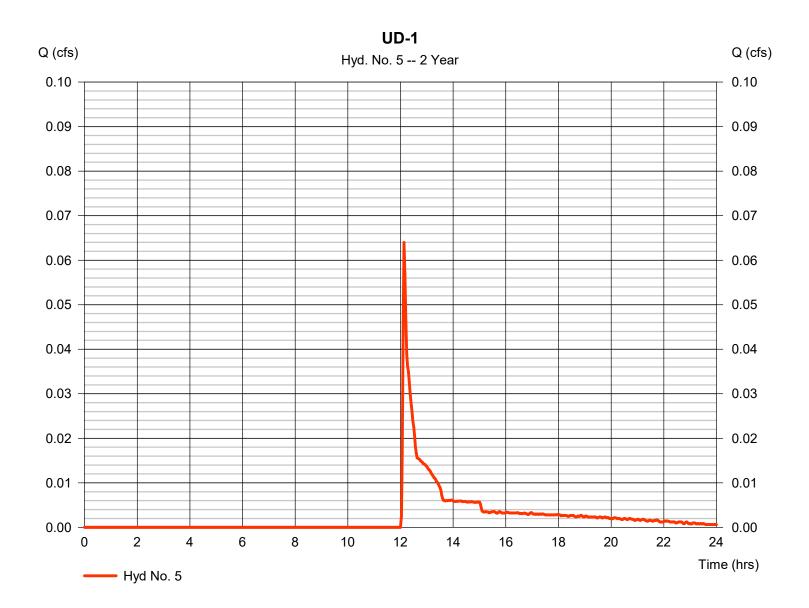


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

P-2

Storm Frequency	= 2 yrs	Time interval	= 2 min
Total precip.	= 2.6900 in	Distribution	= Custom
Storm duration	= S:\Design Standards\H	ydrology\Hydraflow Dis	tribution\MSE3 DISTRIBUTION C

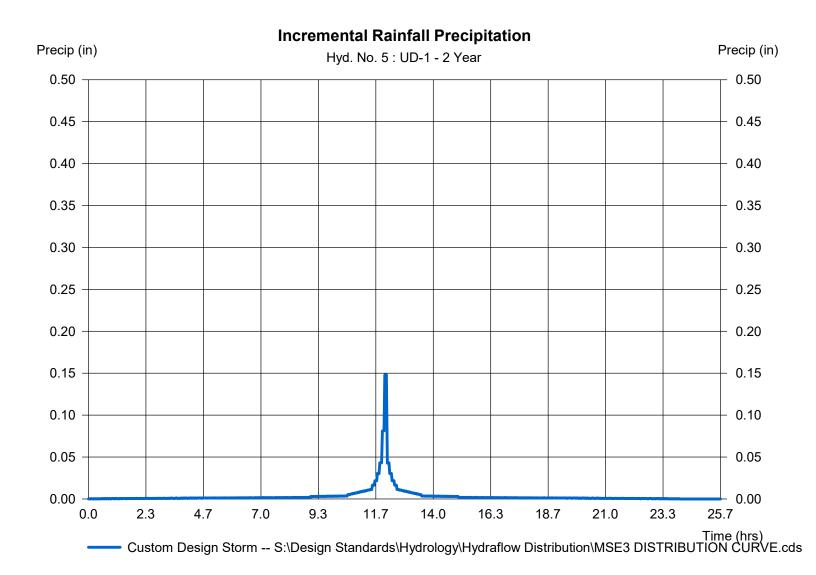

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 5

UD-1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.064 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 0.005 acft
Drainage area	= 0.244 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.69 in	Distribution	= Custom
Storm duration	= S:\Design Standards	s\Hydrology& hlypleaffactro Distribut	ion†MASEE3 DISTRIBUTION CU

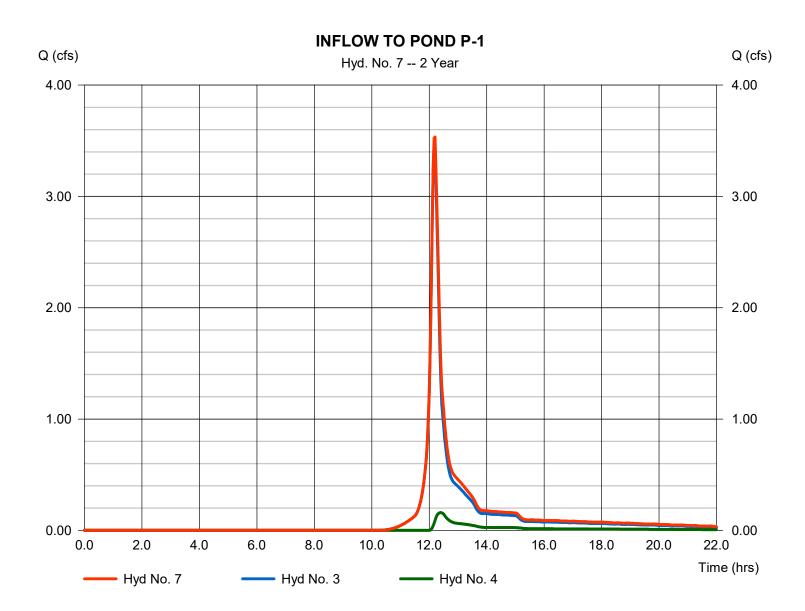


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

UD-1

Storm Frequency	= 2 yrs	Time interval	= 2 min
Total precip.	= 2.6900 in	Distribution	= Custom
Storm duration	= S:\Design Standards\H	ydrology\Hydraflow Dist	tribution\MSE3 DISTRIBUTION C



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

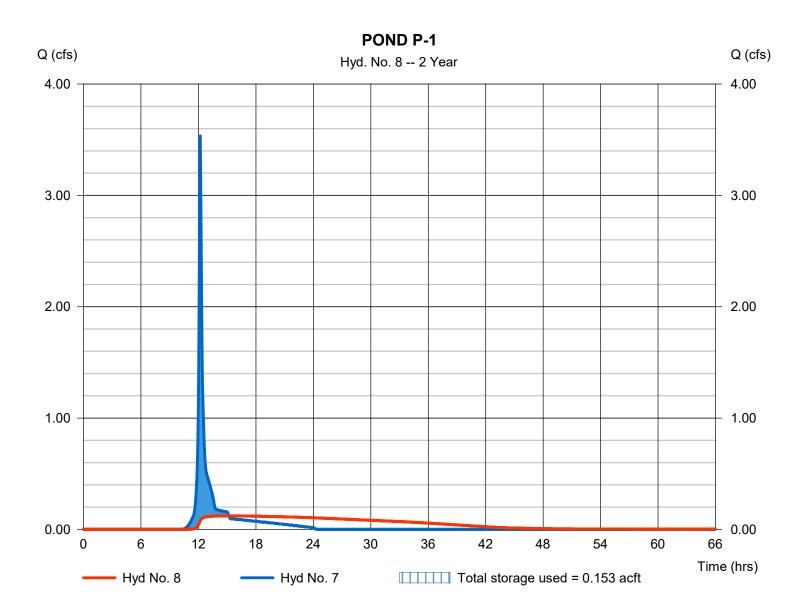
Hyd. No. 7

INFLOW TO POND P-1

Hydrograph type Storm frequency	= Combine = 2 yrs	Peak discharge Time to peak	= 3.534 cfs = 12.20 hrs
Time interval	= 2 min	Hyd. volume	= 0.226 acft
Inflow hyds.	= 3, 4	Contrib. drain. area	= 2.858 ac

31

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

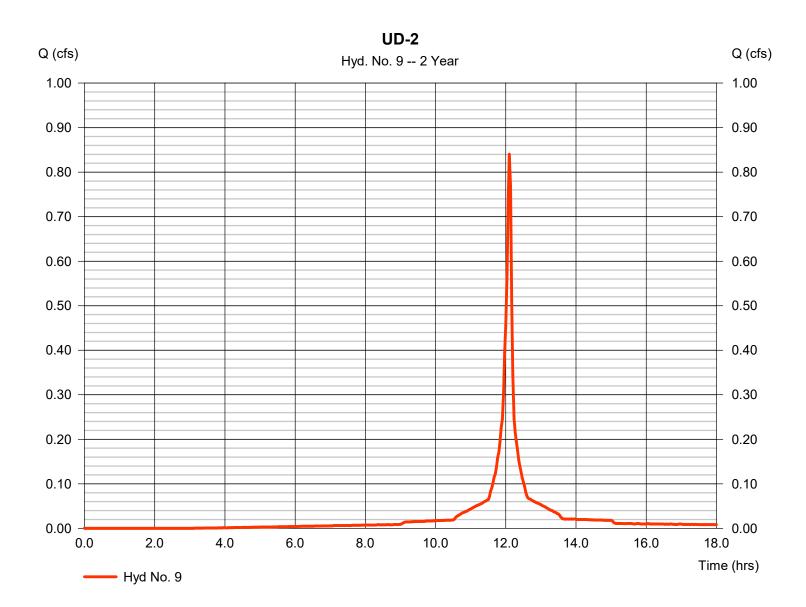

Friday, 03 / 22 / 2019

Hyd. No. 8

POND P-1

Hydrograph type	= Reservoir	Peak discharge	= 0.121 cfs
Storm frequency	= 2 yrs	Time to peak	= 15.17 hrs
Time interval	= 2 min	Hyd. volume	= 0.225 acft
Inflow hyd. No.	= 7 - INFLOW TO POND P-1	Max. Elevation	= 58.96 ft
Reservoir name	= POND P-1	Max. Storage	= 0.153 acft

Storage Indication method used.

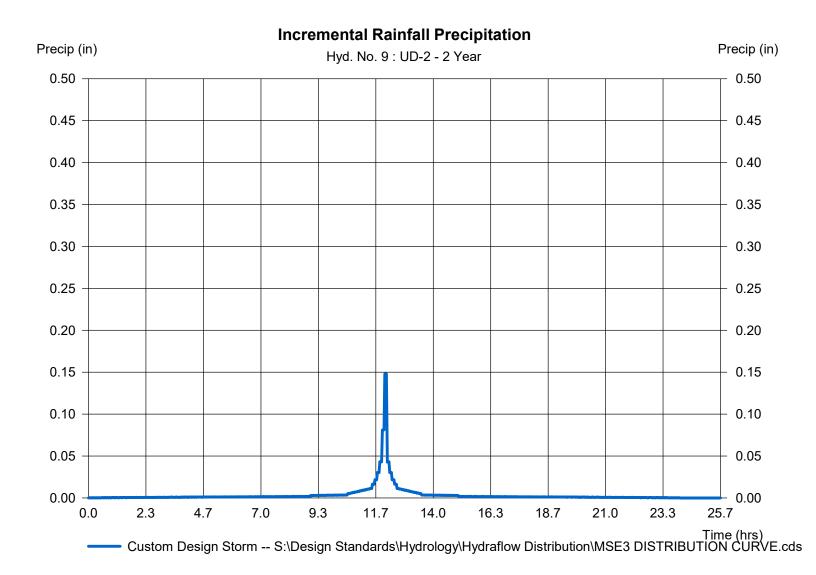

32

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 9

Hydrograph type	= SCS Runoff	Peak discharge	= 0.840 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 0.042 acft
Drainage area	= 0.217 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.69 in	Distribution	= Custom
Storm duration	= S:\Design Standards	s\Hydrology&hbypleaffacttoDistribut	ion \ M93223 DISTRIBUTION CU

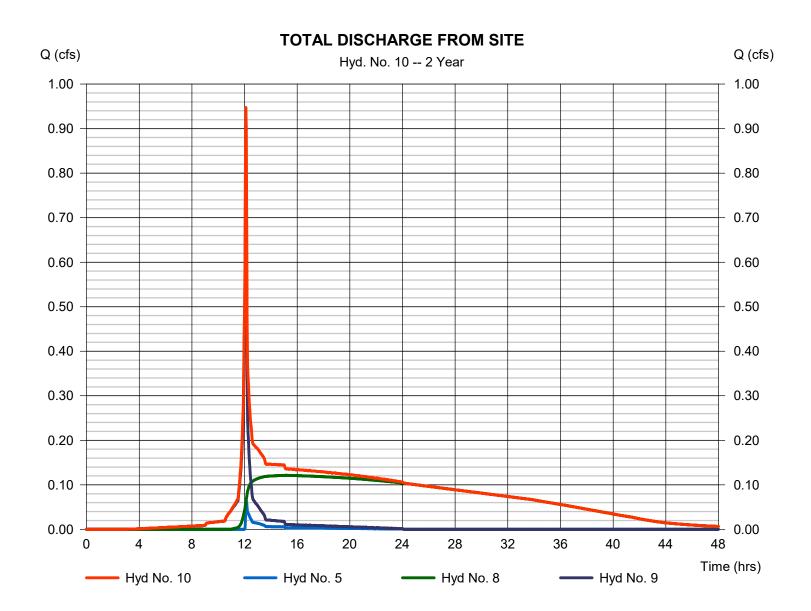


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 9

UD-2

Storm Frequency	= 2 yrs	Time interval	= 2 min
Total precip.	= 2.6900 in	Distribution	= Custom
Storm duration	= S:\Design Standards\H	ydrology\Hydraflow Dis	tribution\MSE3 DISTRIBUTION C



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 10

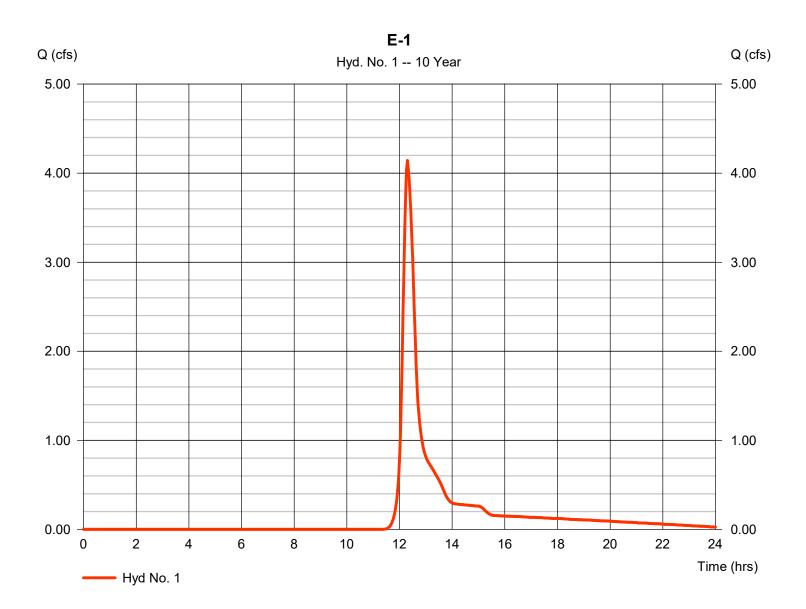
TOTAL DISCHARGE FROM SITE

Hydrograph type Storm frequency	= Combine = 2 yrs	Peak discharge Time to peak	= 0.947 cfs = 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 0.271 acft
Inflow hyds.	= 5, 8, 9	Contrib. drain. area	= 0.461 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (acft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (acft)	Hydrograph Description
1	SCS Runoff	4.143	2	738	0.337				E-1
3	SCS Runoff	6.012	2	730	0.356				P-1
4	SCS Runoff	0.665	2	736	0.058				P-2
5	SCS Runoff	0.280	2	728	0.014				UD-1
7	Combine	6.476	2	732	0.413	3, 4,			INFLOW TO POND P-1
8	Reservoir	1.428	2	756	0.412	7	59.45	0.222	POND P-1
9	SCS Runoff	1.196	2	726	0.060				UD-2
10	Combine	1.574	2	756	0.486	5, 8, 9			TOTAL DISCHARGE FROM SITE

\\Trio-data1\lobbys\WPDOCS\DOCUMENT\998\et500257-01162844516ear Water Man & gielanyer037/2222009-93-22_HYDRAFLOW CALC_te

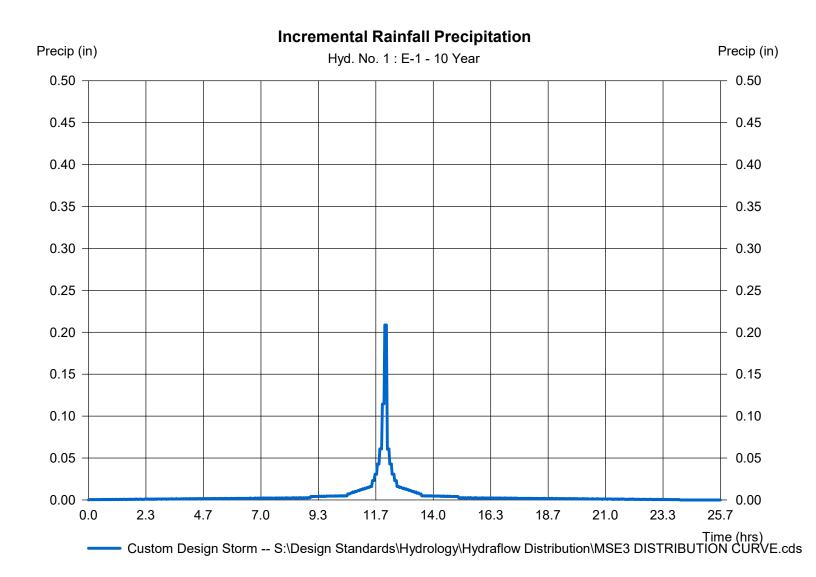

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 1

Ε	_	1
_		

Hydrograph type	= SCS Runoff	Peak discharge	= 4.143 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 0.337 acft
Drainage area	= 3.319 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.60 min
Total precip.	= 3.80 in	Distribution	= Custom
Storm duration	= S:\Design Standard	ls\Hydrolog y3hbypleaffaotr øDistribut	ion†M85E3 DISTRIBUTION CU

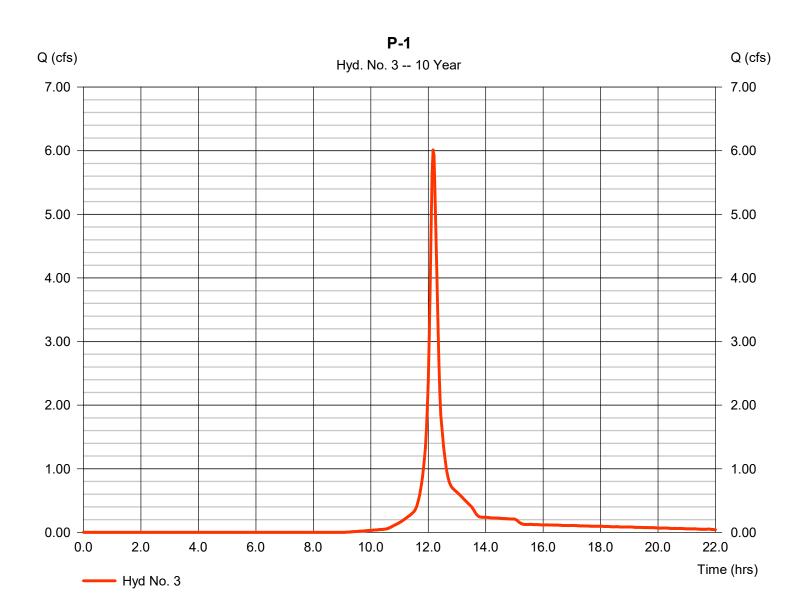


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

E-1

Storm Frequency	= 10 yrs	Time interval	= 2 min
Total precip.	= 3.8000 in	Distribution	= Custom
Storm duration	= S:\Design Standards\H	ydrology\Hydraflow Dist	tribution\MSE3 DISTRIBUTION C

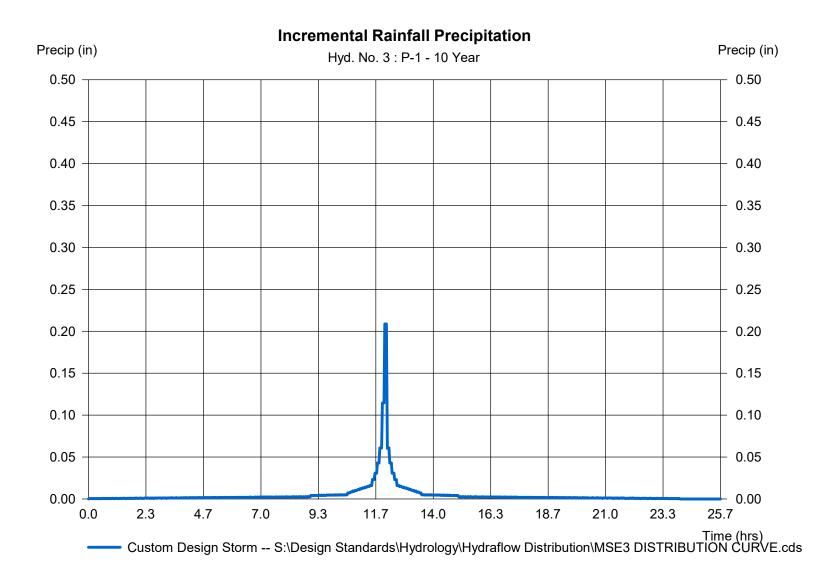


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 6.012 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 0.356 acft
Drainage area	= 1.884 ac	Curve number	= 84
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.10 min
Total precip.	= 3.80 in	Distribution	= Custom
Storm duration	= S:\Design Standards	∖Hydrology& hlypleaffactro Distribut	tion☆M488⊒3 DISTRIBUTION CU



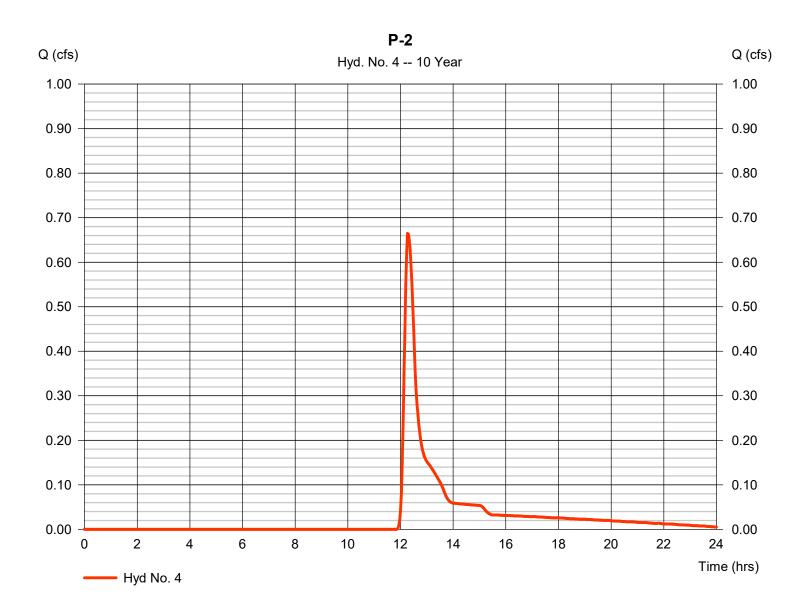
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

P-1

Storm Frequency	= 10 yrs	Time interval	= 2 min
Total precip.	= 3.8000 in	Distribution	= Custom
Storm duration	= S:\Design Standards\H	ydrology\Hydraflow Dis	tribution\MSE3 DISTRIBUTION C

40

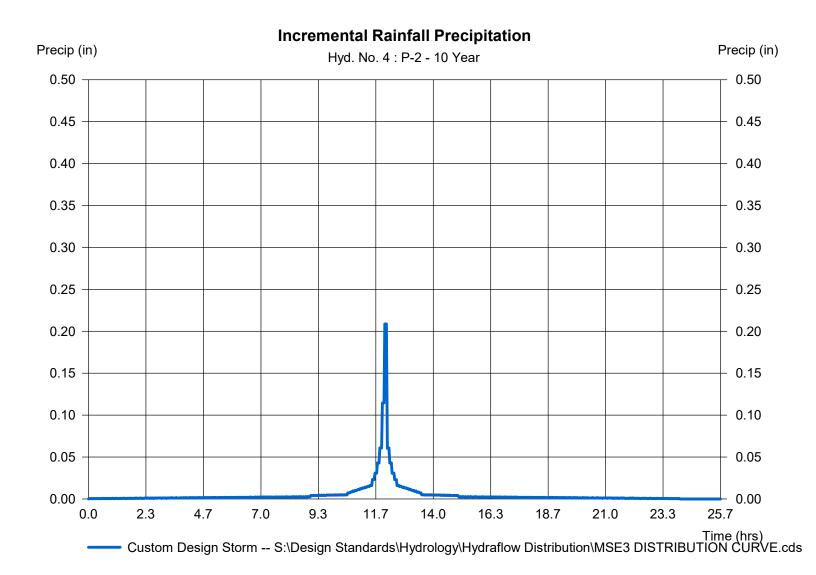

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 4

P-2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.665 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 0.058 acft
Drainage area	= 0.974 ac	Curve number	= 61
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.50 min
Total precip.	= 3.80 in	Distribution	= Custom
Storm duration	= S:\Design Standards	s\Hydrolog y&haypleaffactvo Distribut	iorn‡M488⊒3 DISTRIBUTION CU

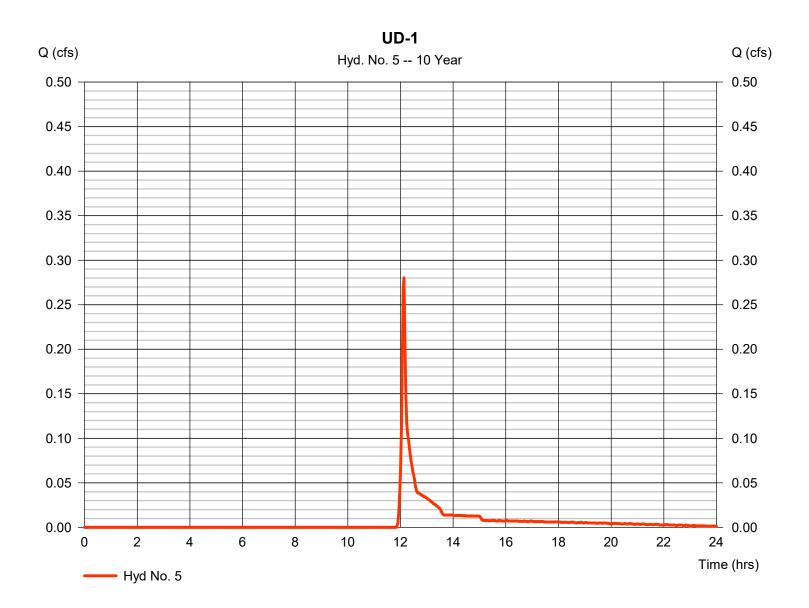


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

P-2

Storm Frequency	= 10 yrs	Time interval	= 2 min
Total precip.	= 3.8000 in	Distribution	= Custom
Storm duration	= S:\Design Standards\H	ydrology\Hydraflow Dis	tribution\MSE3 DISTRIBUTION C

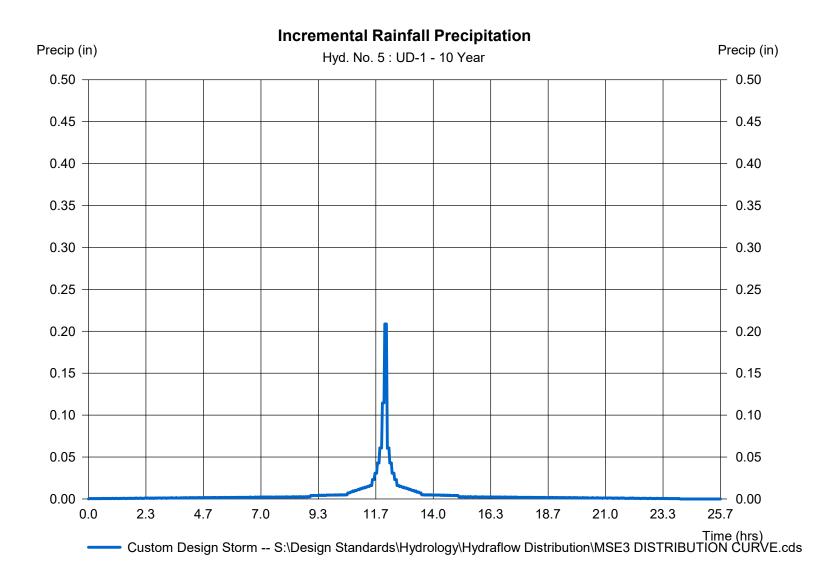

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 5

UD-1

= SCS Runoff	Peak discharge	= 0.280 cfs
= 10 yrs	Time to peak	= 12.13 hrs
= 2 min	Hyd. volume	= 0.014 acft
= 0.244 ac	Curve number	= 61
= 0.0 %	Hydraulic length	= 0 ft
= User	Time of conc. (Tc)	= 6.00 min
= 3.80 in	Distribution	= Custom
= S:\Design Standards\Hy	/drology&haypleaffactvoDistribut	.ion₩MSEE3 DISTRIBUTION CU
	= 10 yrs = 2 min = 0.244 ac = 0.0 % = User = 3.80 in	= 10 yrsTime to peak= 2 minHyd. volume= 0.244 acCurve number= 0.0 %Hydraulic length= UserTime of conc. (Tc)

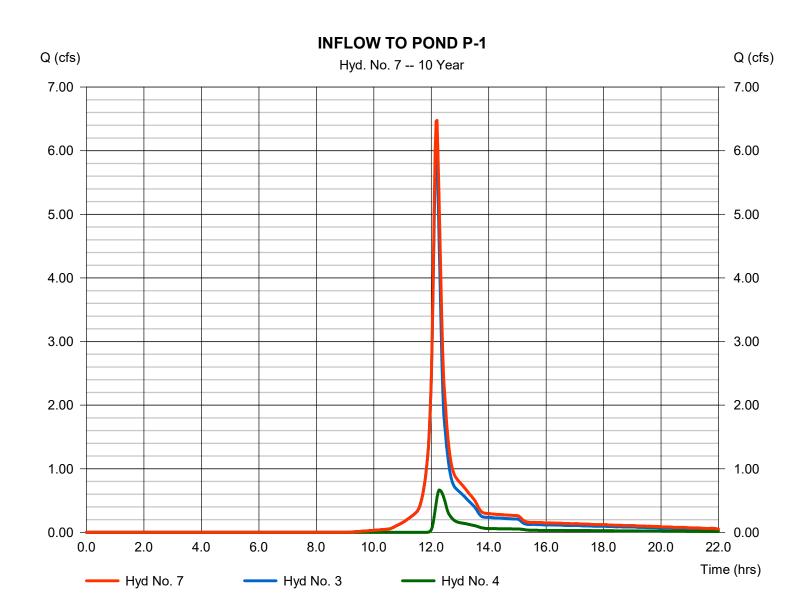


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

UD-1

Storm Frequency	= 10 yrs	Time interval	= 2 min
Total precip.	= 3.8000 in	Distribution	= Custom
Storm duration	= S:\Design Standards\H	ydrology\Hydraflow Dis	tribution\MSE3 DISTRIBUTION C



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

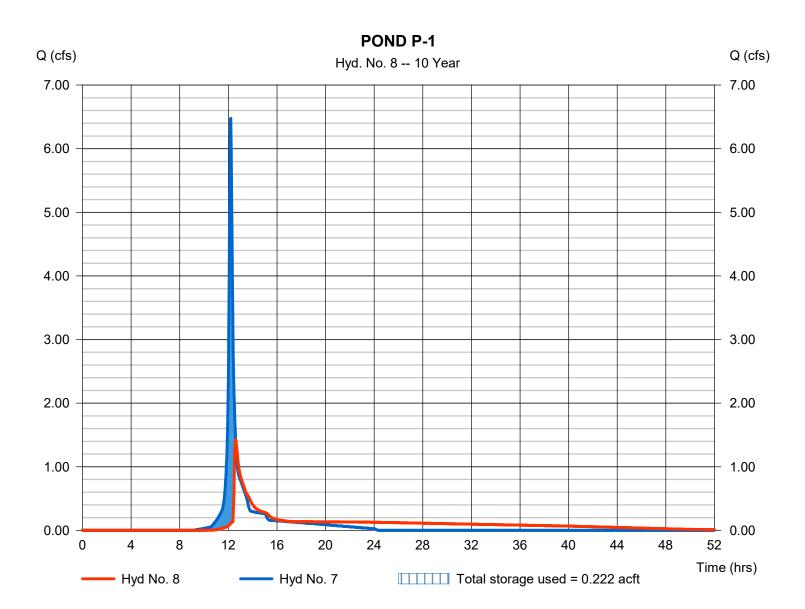
Hyd. No. 7

INFLOW TO POND P-1

Hydrograph type Storm frequency	= Combine = 10 yrs	Peak discharge Time to peak	= 6.476 cfs = 12.20 hrs
Time interval	= 2 min	Hyd. volume	= 0.413 acft
Inflow hyds.	= 3, 4	Contrib. drain. area	= 2.858 ac

45

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

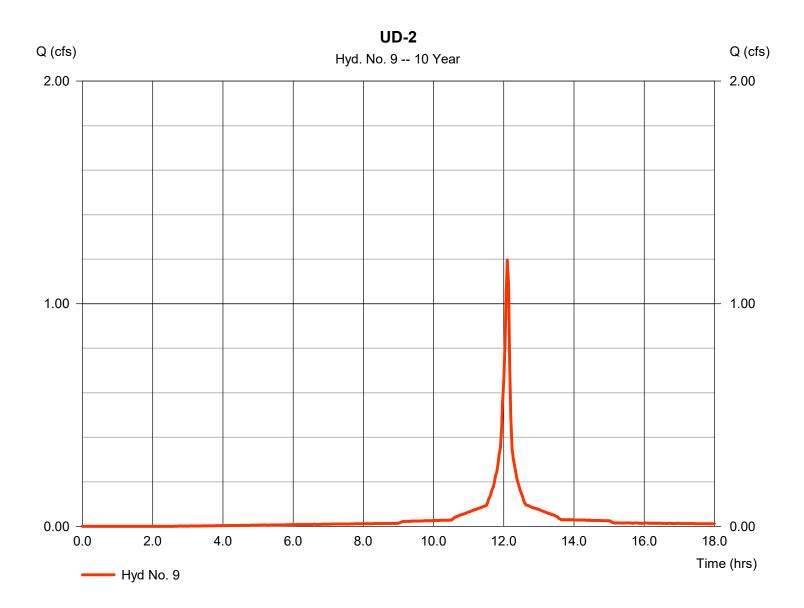

Friday, 03 / 22 / 2019

Hyd. No. 8

POND P-1

Hydrograph type	= Reservoir	Peak discharge	= 1.428 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.60 hrs
Time interval	= 2 min	Hyd. volume	= 0.412 acft
Inflow hyd. No.	= 7 - INFLOW TO POND P-1	Max. Elevation	= 59.45 ft
Reservoir name	= POND P-1	Max. Storage	= 0.222 acft

Storage Indication method used.

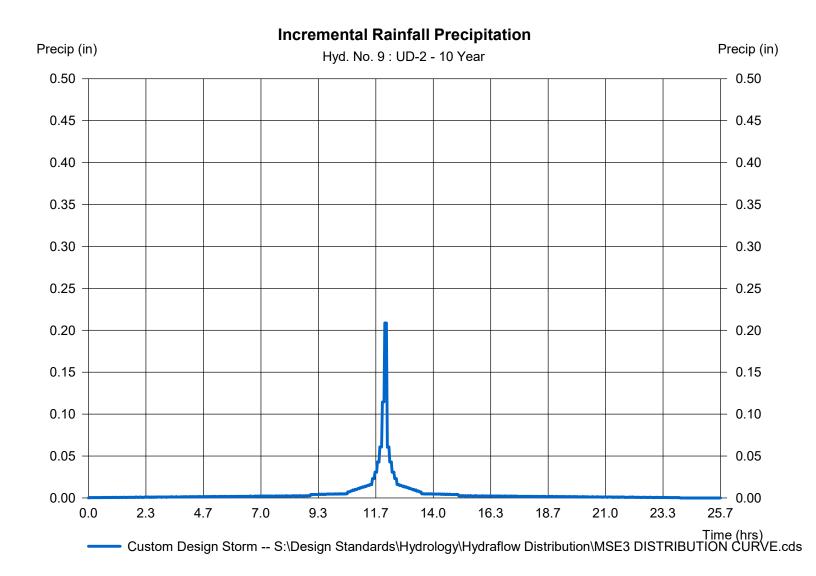

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 9

UD-2

Hydrograph type	= SCS Runoff	Peak discharge	= 1.196 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 0.060 acft
Drainage area	= 0.217 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.80 in	Distribution	= Custom
Storm duration	= S:\Design Standards	s\Hydrology& hbypleaffactv oDistribut	.ion+M493⊒3 DISTRIBUTION CU

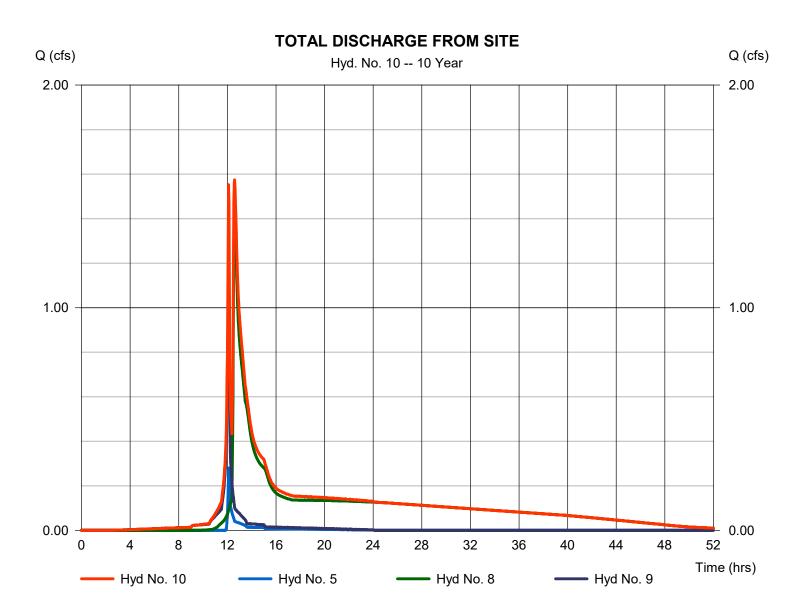


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 9

UD-2

Storm Frequency	= 10 yrs	Time interval	= 2 min
Total precip.	= 3.8000 in	Distribution	= Custom
Storm duration	= S:\Design Standards\H	ydrology\Hydraflow Dis	tribution\MSE3 DISTRIBUTION C



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 10

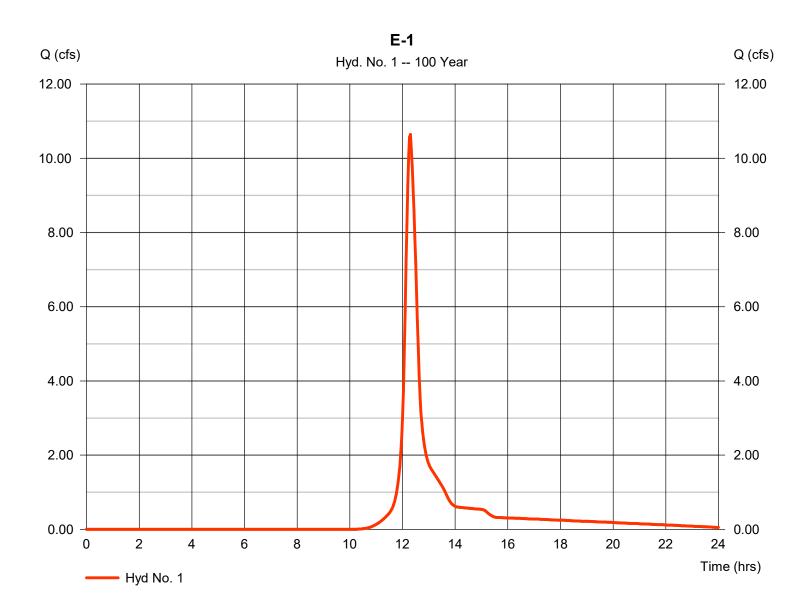
TOTAL DISCHARGE FROM SITE

Hydrograph type	= Combine	Peak discharge	= 1.574 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.60 hrs
Time interval	= 2 min	Hyd. volume	= 0.486 acft
Inflow hyds.	= 5, 8, 9	Contrib. drain. area	= 0.461 ac
innow nyus.	- 5, 8, 9	Contrib. drain. area	- 0.401 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (acft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (acft)	Hydrograph Description
1	SCS Runoff	10.64	2	738	0.828				E-1
3	SCS Runoff	11.69	2	730	0.705				P-1
4	SCS Runoff	2.359	2	736	0.172				P-2
5	SCS Runoff	0.924	2	726	0.040				UD-1
7	Combine	13.60	2	730	0.877	3, 4,			INFLOW TO POND P-1
8	Reservoir	9.611	2	738	0.876	7	59.93	0.290	POND P-1
9	SCS Runoff	1.953	2	726	0.101				UD-2
10	Combine	10.33	2	738	1.017	5, 8, 9			TOTAL DISCHARGE FROM SITE

\\Trio-data1\lobbys\WPDOCS\DOCUMENT\\$98\et5025-011028443310Yea1Water Man & gielaner039/a222200493-22_HYDRAFLOW CALC_te

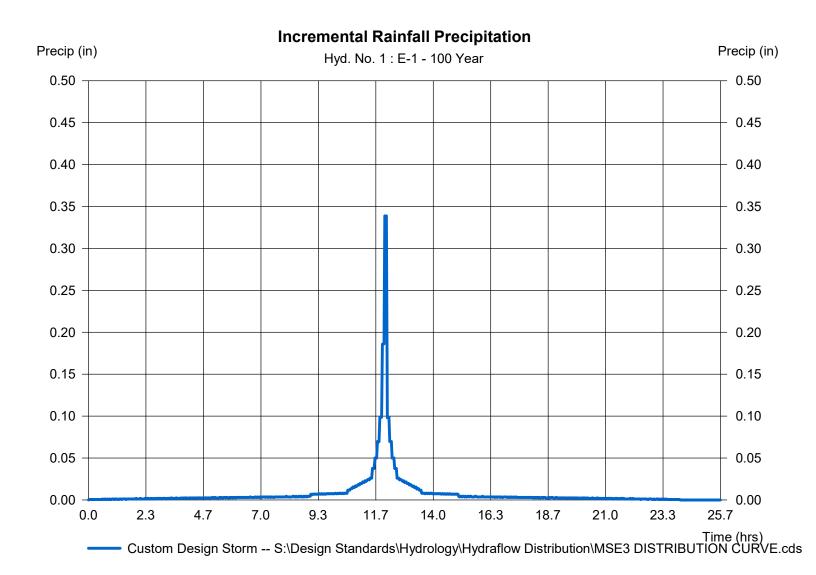

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 1

E-1

Hydrograph type	= SCS Runoff	Peak discharge	= 10.64 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 0.828 acft
Drainage area	= 3.319 ac	Curve number	= 70
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 22.60 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= S:\Design Standards	s\Hydrolog y&haypleaffactvo Distribut	ion∔M932E3 DISTRIBUTION CU

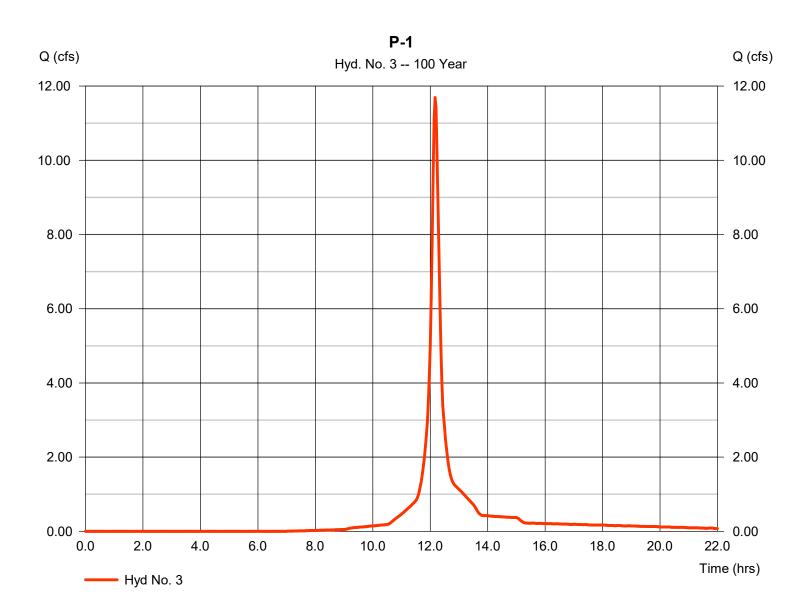


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 1

E-1

Storm Frequency	= 100 yrs	Time interval	= 2 min
Total precip.	= 6.1700 in	Distribution	= Custom
Storm duration	= S:\Design Standards\H	ydrology\Hydraflow Dist	tribution\MSE3 DISTRIBUTION C

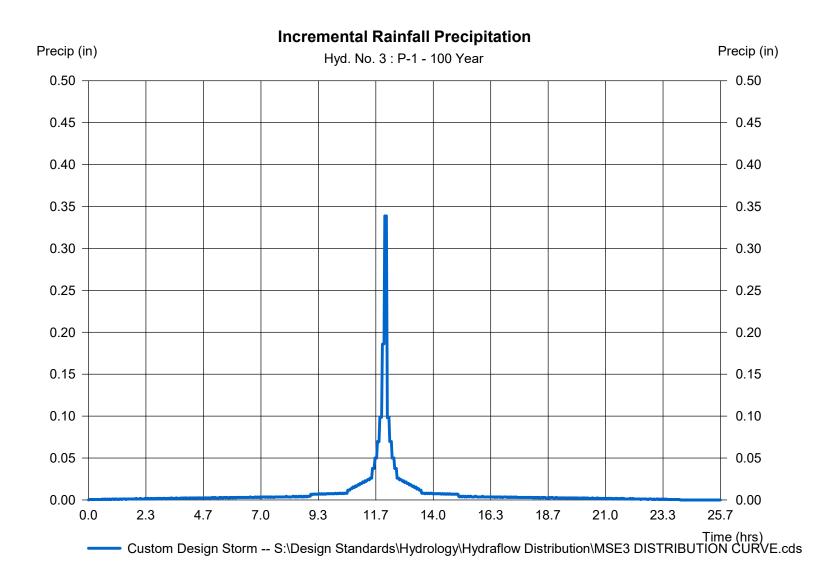


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 3

Hydrograph type	= SCS Runoff	Peak discharge	= 11.69 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 0.705 acft
Drainage area	= 1.884 ac	Curve number	= 84
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 10.10 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= S:\Design Standard	s\Hydrology&haypleaffacttoDistribut	tionnaMasee3 DISTRIBUTION CU

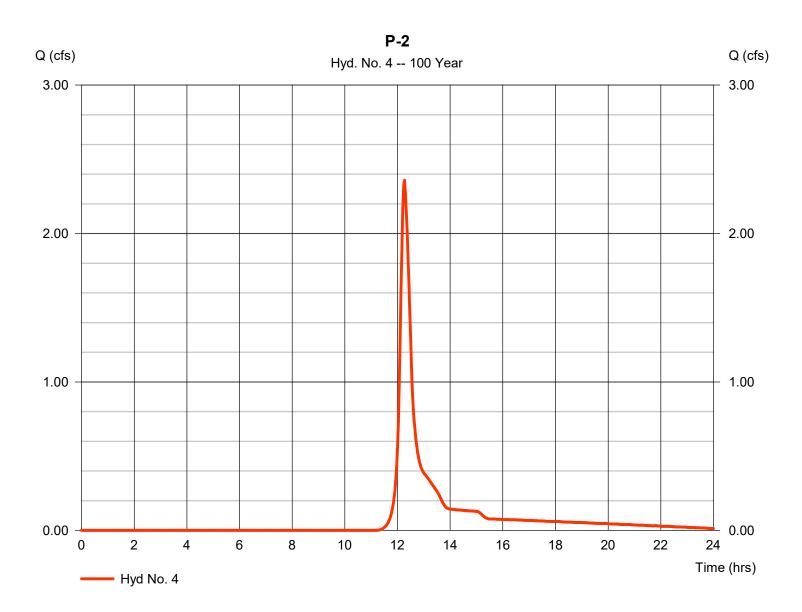


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 3

P-1

Storm Frequency	= 100 yrs	Time interval	= 2 min
Total precip.	= 6.1700 in	Distribution	= Custom
Storm duration	= S:\Design Standards\H	ydrology\Hydraflow Dist	tribution\MSE3 DISTRIBUTION C

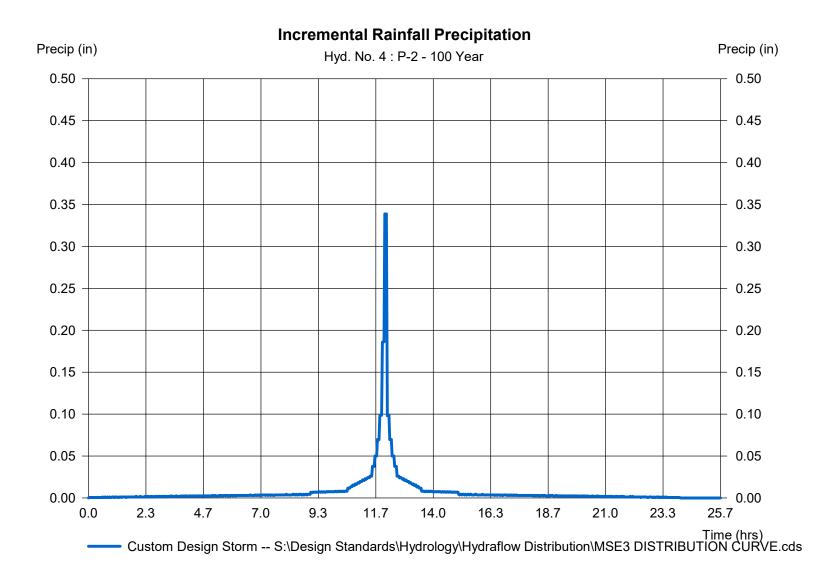

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 4

P-2	
-----	--

Hydrograph type	= SCS Runoff	Peak discharge	= 2.359 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 0.172 acft
Drainage area	= 0.974 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.50 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= S:\Design Standard	ls\Hydrolog y3hlypleaffaotto Distributi	tionn⊀M488⊒3 DISTRIBUTION CU

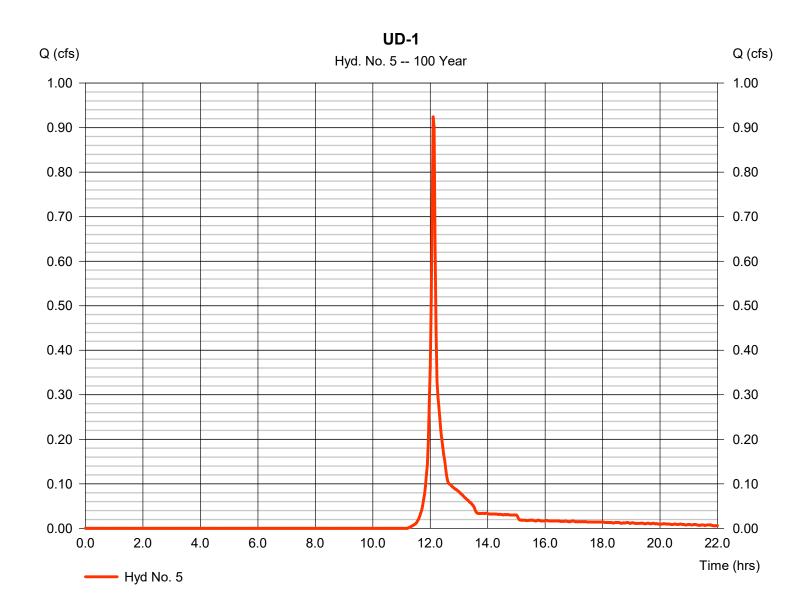


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 4

P-2

Storm Frequency	= 100 yrs	Time interval	= 2 min
Total precip.	= 6.1700 in	Distribution	= Custom
Storm duration	= S:\Design Standards\H	ydrology\Hydraflow Dis	tribution\MSE3 DISTRIBUTION C

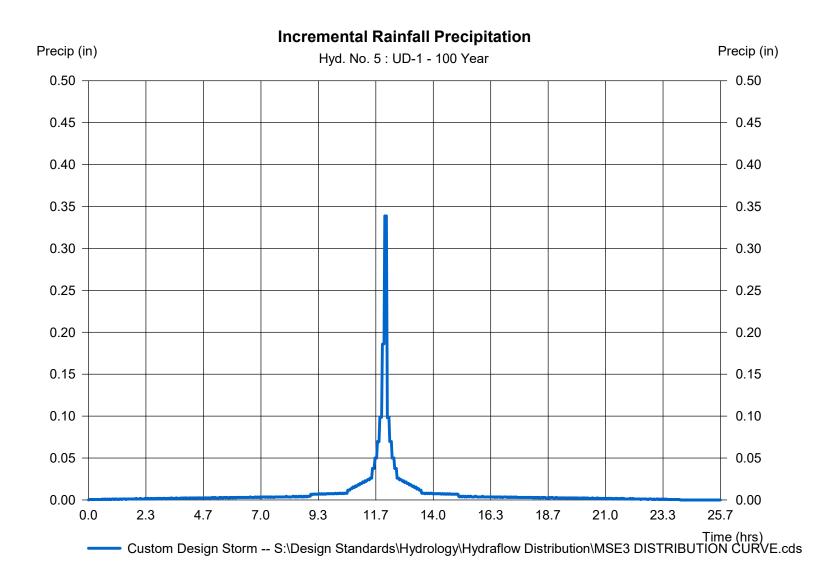

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 5

UD-1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.924 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 0.040 acft
Drainage area	= 0.244 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= S:\Design Standard	ls\Hydrology& haydeaffactro Distribut	ion†M489⊒3 DISTRIBUTION CU

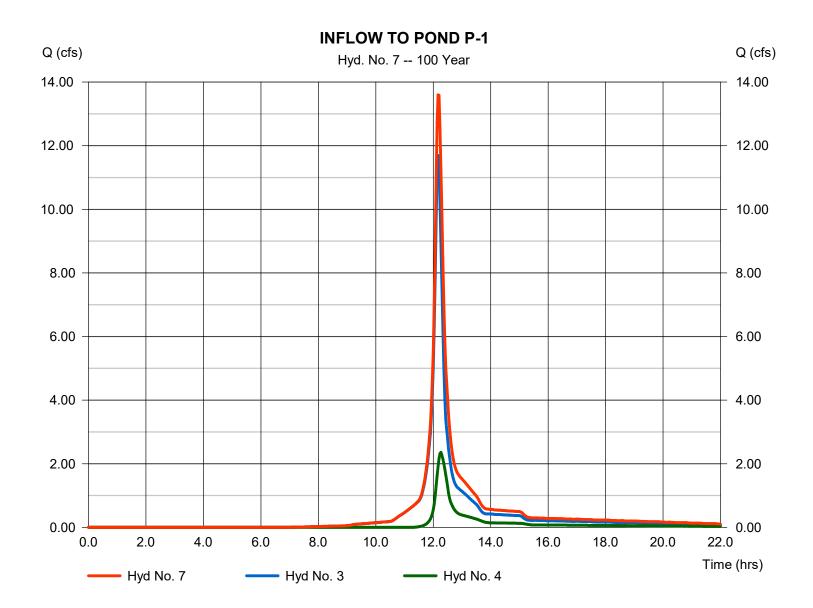


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 5

UD-1

Storm Frequency	= 100 yrs	Time interval	= 2 min
Total precip.	= 6.1700 in	Distribution	= Custom
Storm duration	= S:\Design Standards\H	ydrology\Hydraflow Dis	tribution\MSE3 DISTRIBUTION C



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 7

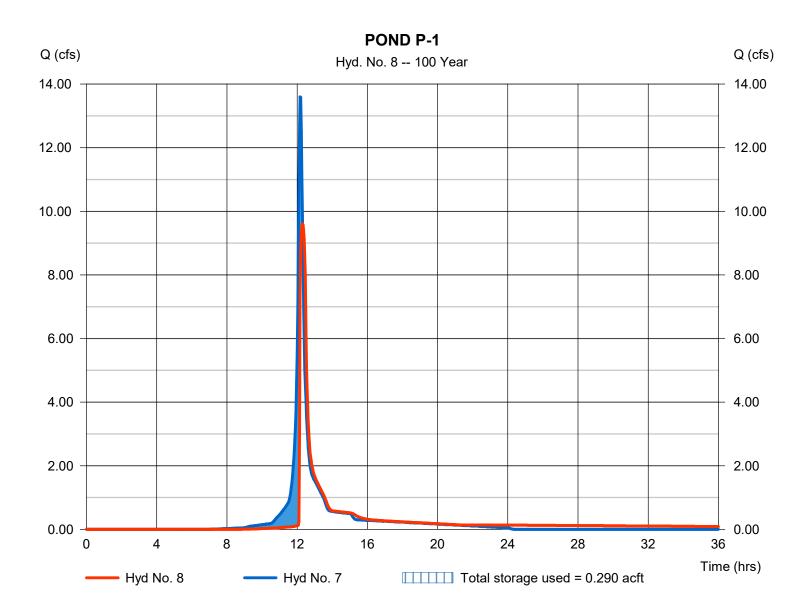
INFLOW TO POND P-1

Hydrograph type	= Combine	Peak discharge	= 13.60 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 0.877 acft
Inflow hyds.	= 3, 4	Contrib. drain. area	= 2.858 ac
Inflow hyds.	= 3, 4	Contrib. drain. area	= 2.858

59

Friday, 03 / 22 / 2019

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

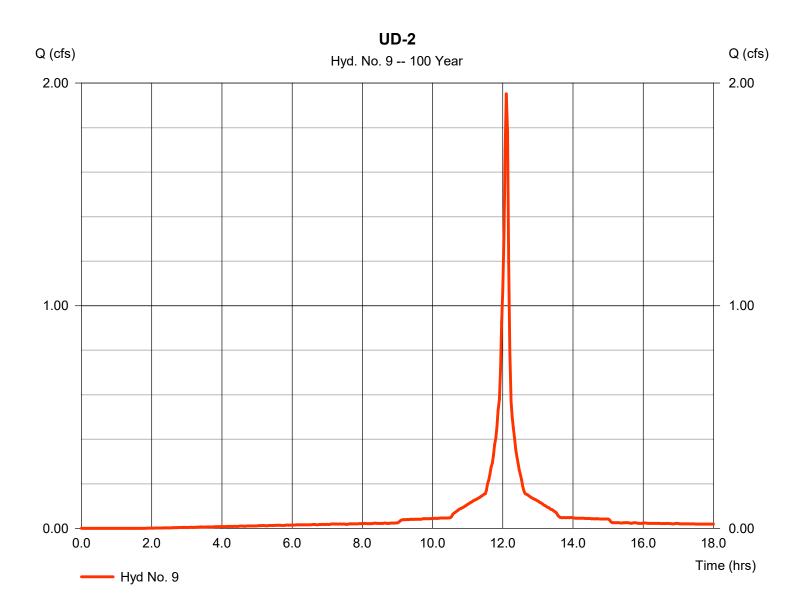

Friday, 03 / 22 / 2019

Hyd. No. 8

POND P-1

Hydrograph type	= Reservoir	Peak discharge	= 9.611 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.30 hrs
Time interval	= 2 min	Hyd. volume	= 0.876 acft
	= 7 - INFLOW TO POND P-1	Max. Elevation	= 59.93 ft
Inflow hyd. No. Reservoir name	= 7 - INFLOW TO POND P-1 = POND P-1	Max. Storage	= 0.290 acft

Storage Indication method used.

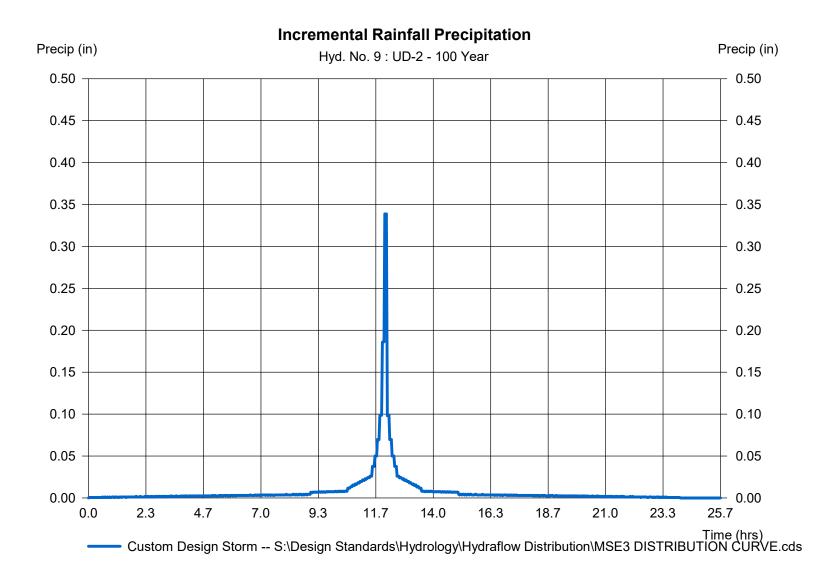

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Friday, 03 / 22 / 2019

Hyd. No. 9

UD-2)
------	---

Hydrograph type	= SCS Runoff	Peak discharge	= 1.953 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 0.101 acft
Drainage area	= 0.217 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= S:\Design Standards	s\Hydrology&hbypleaffacttoDistribut	tion₩MSEE3 DISTRIBUTION CU

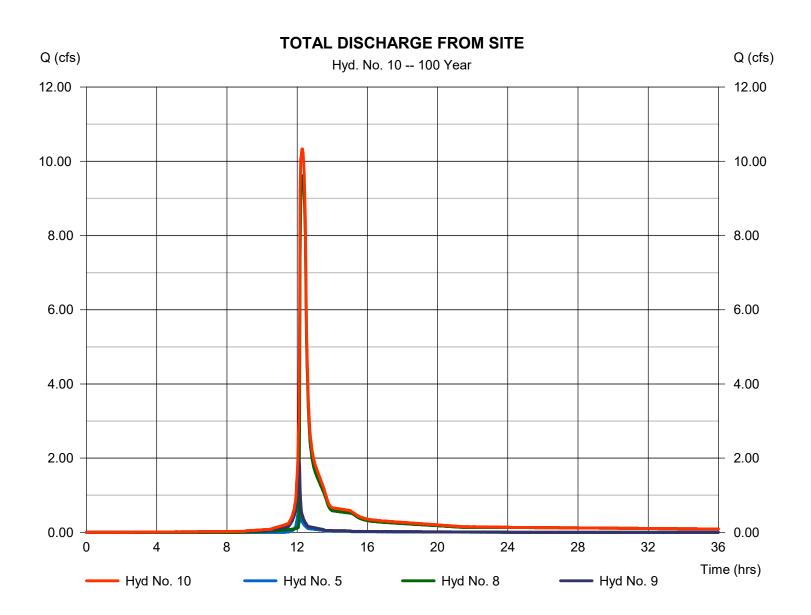

Precipitation Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 9

UD-2

Storm Frequency	= 100 yrs	Time interval	= 2 min
Total precip.	= 6.1700 in	Distribution	= Custom
Storm duration	= S:\Design Standards\H	ydrology\Hydraflow Dis	tribution\MSE3 DISTRIBUTION C



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Hyd. No. 10

TOTAL DISCHARGE FROM SITE

Combine 100 yrs	5	= 10.33 cfs = 12.30 hrs
5	•	= 1.017 acft
5, 8, 9	Contrib. drain. area	= 0.461 ac
	00 yrs min	00 yrs Time to peak min Hyd. volume

63

Friday, 03 / 22 / 2019

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020

Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)					
(Yrs)	В	D	E	(N/A)		
1	18.2870	4.3000	0.6909			
2	26.1396	5.4000	0.7292			
3	0.0000	0.0000	0.0000			
5	35.3749	5.9000	0.7422			
10	37.7243	5.3000	0.7189			
25	40.9232	4.8000	0.6943			
50	39.8053	3.9000	0.6600			
100	38.6889	3.1000	0.6284			
	1		1	1		

File name: PORT WASHINGTON ATLAS 14 IDF.IDF

Intensity = B / (Tc + D)^E

Return	Intensity Values (in/hr)											
Period (Yrs)	5 min	10	15	20	25	30	35	40	45	50	55	60
1	3.92	2.91	2.37	2.02	1.77	1.59	1.45	1.33	1.24	1.16	1.09	1.03
2	4.74	3.56	2.90	2.47	2.17	1.94	1.76	1.62	1.50	1.40	1.31	1.24
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	6.01	4.54	3.71	3.16	2.77	2.48	2.25	2.07	1.91	1.79	1.68	1.58
10	7.05	5.31	4.33	3.70	3.25	2.91	2.65	2.43	2.26	2.11	1.98	1.87
25	8.39	6.30	5.15	4.40	3.88	3.48	3.17	2.92	2.71	2.54	2.39	2.26
50	9.40	7.01	5.72	4.90	4.32	3.89	3.55	3.28	3.05	2.86	2.70	2.56
100	10.39	7.68	6.27	5.38	4.76	4.29	3.93	3.63	3.39	3.19	3.01	2.86

Tc = time in minutes. Values may exceed 60.

ign Standai	rds\Hydrology\Hydrafl	ow UPDATED ATLAS 14\STATIONS\WAUKESHA\WAUKESHA ATLAS 14 Precip.p	ср

		Rainfall Precipitation Table (in)							
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	
SCS 24-hour	2.38	2.69	0.00	3.26	3.80	4.65	5.37	6.17	
SCS 6-Hr	1.75	2.03	0.00	2.55	3.04	3.77	4.40	5.08	
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Custom	2.38	2.69	0.00	0.00	3.80	0.00	0.00	6.17	

Hydrafiow 11 Pale of Contents -01/284-Storm Water Management Plan/2019-03-22_HYDRAFLOW CALC_test.gpw

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2020	Friday, 03 / 22 / 2019
Watershed Model Schematic	1
Hydrograph Return Period Recap	2
1 - Year	
Summary Report	
Hydrograph Reports	4
Hydrograph No. 1, SCS Runoff, E-1	4
TR-55 Tc Worksheet	5
Precipitation Report	6
Hydrograph No. 3, SCS Runoff, P-1	
TR-55 Tc Worksheet	
Precipitation Report	
Hydrograph No. 4, SCS Runoff, P-2	10
TR-55 Tc Worksheet	11
Precipitation Report	12
Hydrograph No. 5, SCS Runoff, UD-1	13
Precipitation Report	
Hydrograph No. 7, Combine, INFLOW TO POND P-1	15
Hydrograph No. 8, Reservoir, POND P-1	16
	47

Pond Report - POND P-1	17
Hydrograph No. 9, SCS Runoff, UD-2	19
Precipitation Report	20
Hydrograph No. 10, Combine, TOTAL DISCHARGE FROM SITE	21

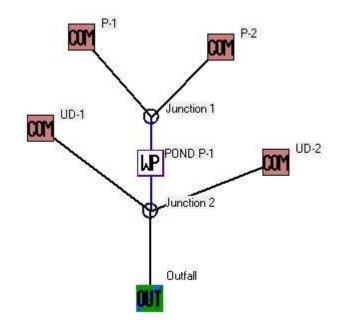
2 - Year

Summary Report	22
Hydrograph Reports	23
Precipitation Report	
Hydrograph No. 3, SCS Runoff, P-1	
Precipitation Report	
Hydrograph No. 4, SCS Runoff, P-2	
Precipitation Report	
Hydrograph No. 5, SCS Runoff, UD-1	
Precipitation Report	
Hydrograph No. 7, Combine, INFLOW TO POND P-1	
Hydrograph No. 8, Reservoir, POND P-1	32
Hydrograph No. 9, SCS Runoff, UD-2	33
Precipitation Report	
Hydrograph No. 10, Combine, TOTAL DISCHARGE FROM SITE	

10 - Year

Summary Report	36
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, E-1	
Precipitation Report	
Hydrograph No. 3, SCS Runoff, P-1	

Precipitation Report	40
Hydrograph No. 4, SCS Runoff, P-2	41
Precipitation Report	
Hydrograph No. 5, SCS Runoff, UD-1	
Precipitation Report	44
Hydrograph No. 7, Combine, INFLOW TO POND P-1	45
Hydrograph No. 8, Reservoir, POND P-1	46
Hydrograph No. 9, SCS Runoff, UD-2	47
Precipitation Report	48
Hydrograph No. 10, Combine, TOTAL DISCHARGE FROM SITE	49


100 - Year

Summary Report	50
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, E-1	51
Precipitation Report	
Hydrograph No. 3, SCS Runoff, P-1	
Precipitation Report	
Hydrograph No. 4, SCS Runoff, P-2	55
Precipitation Report	
Hydrograph No. 5, SCS Runoff, UD-1	
Precipitation Report	
Hydrograph No. 7, Combine, INFLOW TO POND P-1	
Hydrograph No. 8, Reservoir, POND P-1	60
Hydrograph No. 9, SCS Runoff, UD-2	61
Precipitation Report	
Hydrograph No. 10, Combine, TOTAL DISCHARGE FROM SITE	
F Report	64

APPENDIX 4

WinSLAMM Data

Modeling of Proposed Wet Ponds

INPUT DATA

Data file name: \\Trio-data1\lobbys\WPDOCS\DOCUMENT\990\15025-01\284-Storm Water Management Plan\2018-03-23_WinSlamm Calc_Phase 1.mdb WinSLAMM Version 10.4.0 Rain file name: C:\WinSLAMM Files\Rain Files\WisReg - Milwaukee WI 1969.RAN Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI SL06 Dec06.rsvx Residential Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Apply Street Delivery Files to Adjust the After Event Load Street Dirt Mass Balance: False Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI GEO03.ppdx Source Area PSD and Peak to Average Flow Ratio File: C:\WinSLAMM Files\NURP Source Area PSD Files.csv Cost Data file name: Seed for random number generator: -42 Study period starting date: 03/28/69 Study period ending date: 12/06/69 Date: 03-22-2019 Time: 08:22:50 Site information:

LU# 1 - Commercial: P-1 Total area (ac): 1.884

- 1 Roofs 1: 0.224 ac. Flat Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
- 13 Paved Parking 1: 0.759 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
- 31 Sidewalks 1: 0.100 ac. Connected Source Area PSD File: C:\WinSLAMM Files\NURP.cpz
- 45 Large Landscaped Areas 1: 0.731 ac. Normal Silty Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

70 - Water Body Areas: 0.070 ac. Source Area PSD File: C:\WinSLAMM Files\\Commercial Land Use

LU# 2 - Commercial: P-2 Total area (ac): 0.974 45 - Large Landscaped Areas 1: 0.974 ac. Normal Silty Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

LU# 3 - Commercial: UD-1 Total area (ac): 0.244 45 - Large Landscaped Areas 1: 0.244 ac. Normal Silty Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

LU# 4 - Commercial: UD-2 Total area (ac): 0.217

25 - Driveways 1: 0.217 ac. Disconnected Normal Silty Source Area PSD File: C:\WinSLAMM Files\NURP.cpz

Control Practice 1: Wet Detention Pond CP# 1 (DS) - POND P-1 Particle Size Distribution file name: Not needed - calculated by program Initial stage elevation (ft): 5 Peak to Average Flow Ratio: 3.8 Maximum flow allowed into pond (cfs): No maximum value entered **Outlet Characteristics:** Outlet type: Orifice 1 1. Orifice diameter (ft): 0.17 2. Number of orifices: 1 3. Invert elevation above datum (ft): 5 Outlet type: Broad Crested Weir 1. Weir crest length (ft): 10 2. Weir crest width (ft): 10 3. Height from datum to bottom of weir opening: 7.75 Outlet type: Vertical Stand Pipe 1. Stand pipe diameter (ft): 3.9 2. Stand pipe height above datum (ft): 6.85 Pond stage and surface area Pond Area Natural Seepage Other Outflow Entry Stage Number (acres) (ft) (in/hr) (cfs) 0 0.00 0.0000 0.00 0.00 1 0.01 0.0100 0.00 0.00 2 1.00 0.0160 0.00 0.00 3 2.00 0.0230 0.00 0.00 4 3.00 0.0310 0.00 0.00 5 4.00 0.0400 0.00 0.00 6 5.00 0.0900 0.00 0.00 7 5.50 0.1020 0.00 0.00 8 6.50 0.1280 0.00 0.00 9 0.00 7.50 0.1580 0.00 10 8.50 0.1910 0.00 0.00 11 8.75 0.2000 0.00 0.00

Living Word Church WinSLAMM Model Data 03-22-2019

OUTPUT SUMMARY

SLAMM for Windows Version 10.4.0 (c) Copyright Robert Pitt and John Voorhees 2012 All Rights Reserved

Data file name: \\Trio-data1\lobbys\WPDOCS\DOCUMENT\990\15025-01\284-Storm Water Management Plan\2018-03-23 WinSlamm Calc Phase 1.mdb Data file description: Rain file name: C:\WinSLAMM Files\Rain Files\WisReg - Milwaukee WI 1969.RAN Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI_AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI SL06 Dec06.rsvx Residential Street Delivery file name: C:\WinSLAMM Files\WI_Res and Other Urban Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI_Res and Other Urban Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI GEO03.ppdx Model Run Start Date: 03/28/69 Model Run End Date: 12/06/69 Date of run: 03-22-2019 Time of run: 08:22:33 Total Area Modeled (acres): 3.319 Years in Model Run: 0.67

RunoffPercent ParticulatePercentVolumeRunoffSolidsSolids Particulate(cu ft)VolumeConc.YieldSolidsReduction(mg/L)(lbs)Reduction

 Total of all Land Uses without Controls:
 102971
 109.3
 702.6

 Outfall Total with Controls:
 103064
 -0.09%
 20.20
 130.0
 81.50%

 Annualized Total After Outfall Controls:
 154809
 195.3

APPENDIX 5

Storm Water Practice Maintenance Requirements

Document Number

Storm Water Management Practice Maintenance Agreement

Living Word Lutheran Church, as "Owner" of the property described below, in accordance with Chapter 32 City of Waukesha Storm Water Management and Erosion Control, agrees to install and maintain storm water management practice(s) on the subject property in accordance with approved plans and Storm Water Management Plan conditions. The owner further agrees to the terms stated in this document to ensure that the storm water management practice(s) continues serving the intended functions in perpetuity. This Agreement includes the following exhibits:

Exhibit A: <u>Legal Description</u> of the real estate for which this Agreement applies ("Property").

Exhibit B: Location Map(s) – shows an accurate location of each storm water management practice affected by this Agreement.

Exhibit C: <u>Maintenance Plan</u> – prescribes those activities that must be carried out to maintain compliance with this Agreement.

<u>Note</u>: After construction verification has been accepted by the City of Waukesha, for all planned storm water management practices, an <u>addendum(s)</u> to this agreement shall be recorded by the Owner showing design and construction details. The addendum(s) may contain several additional exhibits, including certification by City of Waukesha of Storm Water and Erosion Control Permit termination, as described below.

Name and Return Address

City of Waukesha 130 Delafield Street Waukesha, WI 53188

> WAKC1374002001 Parcel Identification Number(s) – (PIN)

Through this Agreement, the Owner hereby subjects the Property to the following covenants, conditions and restrictions:

- 1. The Owner shall be responsible for the routine and extraordinary maintenance and repair of the storm water management practice(s) and drainage easements identified in Exhibit B until Storm Water and Erosion Control Permit termination by the City of Waukesha in accordance with Chapter 32 of the City Code of Ordinances.
- 2. After Storm Water and Erosion Control Permit termination under 1., the current Owner(s) shall be solely responsible for maintenance and repair of the storm water management practices and drainage easements in accordance with the maintenance plan contained in Exhibit C.
- 3. The Owner(s) shall, at their own cost, complete inspections of the storm water management practices at the time intervals listed in Exhibit C, and conduct the inspections by a qualified professional, file the reports with the City of Waukesha after each inspection and complete any maintenance or repair work recommended in the report. The Owner(s) shall be liable for the failure to undertake any maintenance or repairs. After the work is completed by the Contractor, the qualified professional shall verify that the work was properly completed and submit the follow-up report to the City within 30 days.
- 4. In addition, and independent of the requirements under paragraph 3 above, the City of Waukesha, or its designee, is authorized to access the property as necessary to conduct inspections of the storm water management practices or drainage easements to ascertain compliance with the intent of this Agreement and the activities prescribed in Exhibit C. The City of Waukesha may require work to be done which differs from the report described in paragraph 3 above, if the City of Waukesha reasonably concludes that such work is necessary and consistent with the intent of this agreement. Upon notification by the City of Waukesha of required maintenance or repairs, the Owner(s) shall complete the specified maintenance or repairs within a reasonable time frame determined by the City of Waukesha.
- 5. If the Owner(s) do not complete an inspection under 3. above or required maintenance or repairs under 4. above within the specified time period, the City of Waukesha is authorized, but not required, to perform the specified inspections, maintenance or repairs. In the case of an emergency situation, as determined by the City of Waukesha, no notice shall be required prior to the City of Waukesha performing emergency maintenance or repairs. The City of Waukesha may levy the costs and expenses of such inspections, maintenance or repair related actions as a special charge against the Property and collected as such in accordance with the procedures under s. 66.0627 Wis. Stats. or subch. VII of ch. 66 Wis. Stats.

6. This Agreement shall run with the Property and be binding upon all heirs, successors and assigns. After the Owner records the addendum noted above, the City of Waukesha shall have the sole authority to modify this agreement upon a 30-day notice to the current Owner(s). (Collectively the "Successors") with the Successors being exclusively obligated to perform the covenants contained herein once the Owner has entirely transferred Owner's interest in the Property; provided that nothing herein shall relieve Owner of any obligations that Owner has previously agreed to undertake by separate written document.)

Dated this ____ day of _____, 201_.

Owner: Living Word Lutheran Church

(Owners Signature)

(Owners Typed Name)

Acknowledgements

State of Wisconsin: County of Waukesha

Personally came before me this ____ day of _____, 2019, the above named _____ to me known to be the person who executed the foregoing instrument and acknowledged the same.

[Name] Notary Public, Waukesha County, WI My commission expires:

This document was drafted by:

Matthew Bailey, P.E. Trio Engineering, LLC 4100 N. Calhoun Road, Suite 300 Brookfield, WI 53005

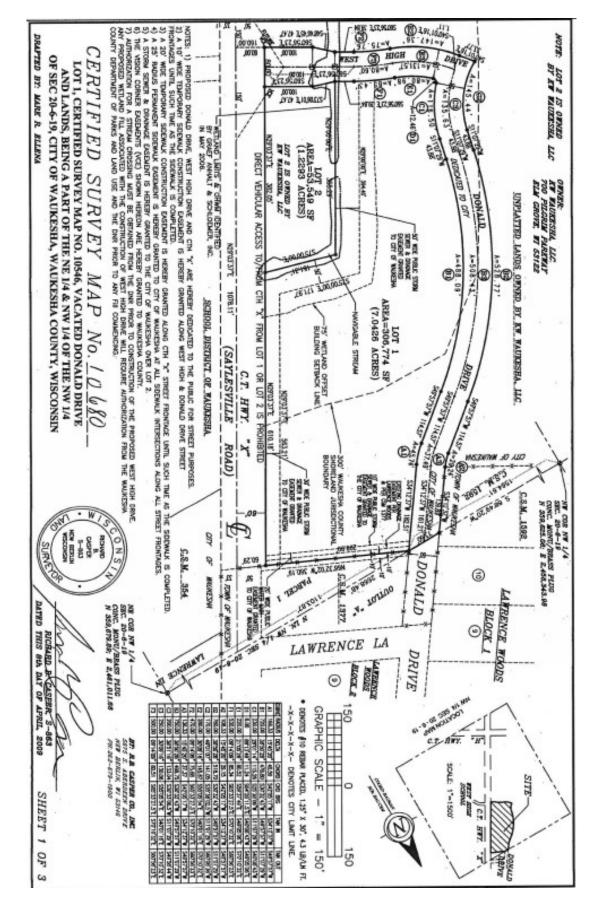
For Certification Stamp

Exhibit A – Legal Description

The following description and reduced copy map identifies the land parcels affected by this Agreement. For a larger scale view of the referenced document, contact the Waukesha County Register of Deeds office.

Project Identifier:	Living Word Lutheran Church	Acres: 7.0428
Date of Recording:		
Map Produced By:	Trio Engineering, LLC	
	4100 N. Calhoun Road, Suite 300	
	Brookfield, WI 53005	
I and Descriptions	·	

Legal Description:


All of Lot 1, of Certified Survey Map No. 10680, located in a part of the Northeast 1/4 and Northwest 1/4 of the Northwest 1/4 of Section 20, Town 6 North, Range 19 East, in the City of Waukesha, Waukesha County, Wisconsin, now being more particularly bounded and described as follows:

Commencing at the Northeast Corner of the Northwest 1/4 of said Section 20; thence South 88°49'20" West along the North line of said Northwest 1/4, 1103.87 feet to the Northwest corner of said Lot 1, which is on the Easterly Right-of-Way line of Donald Drive and the place of beginning of lands hereinafter described;

Thence South 66°32'02" East along the North line of said Lot 1, 299.90 feet to a point on the Northwesterly Right-of-Way line of Saylesville Road (C.T.H. "X"); thence South 29°03'37" West along said Northwesterly line, 610.18 feet to the Northeast corner of Lot 2 of said Certified Survey Map No. 10680; thence North 75°00'00" West along the North line of said Lot 2,151.31 feet the Northwest corner of said Lot 2; thence South 29°00'00" West along the Northwesterly line said Lot 2, 355.29 feet to the Southwest corner of said Lot 2 and the Northeasterly Right-of-Way line of West High Drive; thence North 60°56'23" West along said Northeasterly Right-of-Way Line, 39.84 feet to a point; thence Northwesterly, 85.43 feet along said Northeasterly Right-of-Way line and the arc of a curve whose center lies to the Southwest, whose radius is 530.00 feet and whose chord bears North 65°33'27" West, 85.34 feet to a point; thence Northwesterly, 80.98 feet along said Northeasterly Right-of-Way line and the arc of a curve whose center lies to the Northeast, whose radius is 220.00 feet and whose chord bears North 59°37'49" West, 80.52 feet to a point on the Easterly Right-of-Way line of Donald Drive; thence Northwesterly along said Easterly Right-of-Way line, 12.46 feet along the arc of a curve whose center lies to the Northeast, whose radius is 8.00 feet and whose chord bears North 04°28'11" West, 11.24 feet to a point; thence Northeasterly along said Easterly Right-of-Way line, 116.50 feet along the arc of a curve whose center lies to the Northwest, whose radius is 230.00 feet and whose chord bears North 25°38'06" East, 115.26 feet to a point; thence North 11°07'29" East along said Easterly Right-of-Way Line, 43.88 feet to a point; thence Northeasterly along said Easterly Right-of-Way line, 488.09 feet along the arc of a curve whose center lies to the Southeast, whose radius is 720.00 feet and whose chord bears North 30°32'43" East, 478.80 feet to a point; thence North 49°57'57" East along said Easterly Right-of-Way Line, 114.57 feet to a point; thence Northeasterly along said Easterly Right-of-Way line, 45.74 feet along the arc of a curve whose center lies to the Northwest, whose radius is 166.33 feet and whose chord bears North 42°05'17" East, 45.59 feet to a point; thence North 34°12'37" East along said Easterly Right-of-Way Line, 182.51 feet to the point of beginning of this description.

Said Parcel contains 306,774 Square Feet (or 7.0428 Acres) of land, more or less.

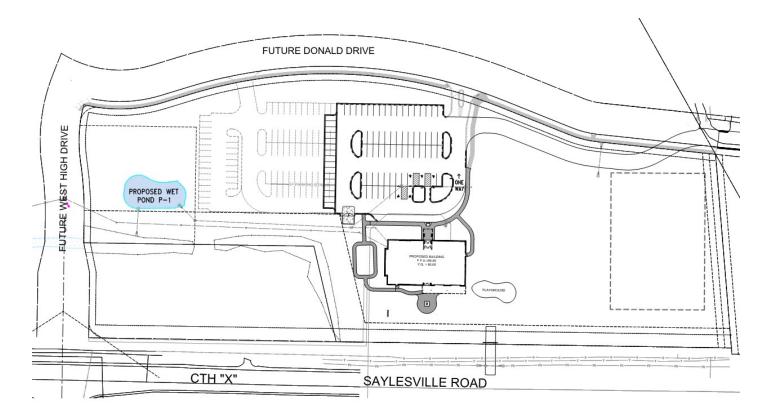

Exhibit A – Continued

Exhibit B – Location Map

The storm water management practices covered by this Agreement are depicted in the reduced copy of a portion of the construction plans, as shown below. The practice associated with this development will be a wet pond and all associated pipes, earthen berms, rock chutes and other components of this practices. All of the noted storm water management practices are located within a drainage easement at the southern end of the property.

Development Name(s): Storm water Practices: Location of Practices: Owner: Living Word Lutheran Church Wet Pond Southeast corner of property. Living Word Lutheran Church The Owner of the property, shall be responsible for the cost to repair, maintain or restore said Storm water Management Facilities and Storm water Infiltration Facilities. Said repairs, maintenance and restoration shall be performed by the Owner of this property.

Exhibit C Minimum Storm Water Practice Maintenance Requirements

This exhibit explains the basic function of each of the storm water practices listed in Exhibit B and prescribes the minimum maintenance requirements to remain compliant with this Agreement. The maintenance activities listed below are aimed to ensure these practices continue serving their intended functions in perpetuity. The list of activities is not all inclusive, but rather indicates the minimum type of maintenance that can be expected for this particular site. Access to the stormwater practices for maintenance vehicles is shown in Exhibit B. Any failure of a storm water practice that is caused by a lack of maintenance will subject the Owner(s) to enforcement of the provisions listed on page 1 of this Agreement by the City of Waukesha.

"As-built" construction drawings of the basin, showing actual dimensions, elevations, outlet structures, etc. will be recorded as an addendum(s) to this agreement within 60 days after the City of Waukesha accepts verification of construction from the project engineer.

Minimum Maintenance Requirements:

To ensure the proper long-term function of the storm water management practices described above, the following activities must be completed by 13050 Cleveland, LLC (or their heirs and assigns):

- 1. All outlet pipes must be checked annually or after significant rain events (greater than 3 inches/24hours) to ensure there is no blockage from floating debris or ice, especially in front of the low flow pipes/orifices and the trash rack on the outlet structure risers. Any blockage must be removed immediately.
- 2. Grass swales shall be preserved to allow free flowing of surface runoff in accordance with approved grading plans. No buildings or other structures are allowed in these areas. No grading or filling is allowed that may interrupt flows in any way.
- 3. Grass swales, inlets and outlets must be checked after heavy rains (minimum of annually in May) for signs of erosion. Any eroding areas must be repaired immediately to prevent premature sediment build-up in the downstream forebays or basin. Erosion matting is recommended for repairing grassed areas.
- 4. If floating algae or weed growth becomes a nuisance (decay odors, etc.), it must be removed from the basin or the forebay and deposited where it cannot drain back into the basin. Removal of the vegetation from the water reduces regrowth the following season (by harvesting the nutrients). Wetland vegetation must be maintained along the waters edge for safety and pollutant removal purposes.
- 5. When sediment in the basin has accumulated to an elevation of three feet below the outlet elevation, it must be removed. All removed sediment must be placed in an appropriate upland disposal site and stabilized (grass cover) to prevent sediment from washing back into the basin.
- 6. No grading or filling of the basin or berm other than for sediment removal is allowed, unless otherwise approved by the City.
- 7. Periodic mowing of the grass swales will encourage rigorous grass cover and allow better inspections for erosion. Waiting until after August 1 will avoid disturbing nesting wildlife. Mowing around the basin or the forebays may attract nuisance populations of geese to the property and is not necessary or recommended.
- 8. Any other repair or maintenance needed to ensure the continued function of the storm water practices or as ordered by the City under the provisions listed on page 1 of this Agreement.

Wet Detention Pond

- I. ROUTINE MAINTENANCE
 - A. Mowing
 - 1. Side slopes, embankments, and emergency spillways that are not rock lined which have been planted with turf grasses should be mowed at least three (3) times a year to prevent woody growth and control noxious weeds. Recommended mowing times are April, July and October of each year.

- 2. The Owner may more frequently mow areas adjacent to the entry drive, typically once every week to two weeks during a normal growing season, for aesthetic and allergy control purposes.
- 3. Native grasses should be mowed to a height of 6" in mid to late summer or after they have achieved a height of 1-1/2 feet during the first growing season. Further mowing in subsequent growing seasons may not be required.
- 4. A 6" to 8" mowing every 3 to 4 years, may suffice as a substitute management technique. The mowed area should be raked and performed in the spring.
- B. Inspections
 - 1. Inspections of the ponds shall be completed on an annual basis or after significant rainfall events.
 - 2. The inspections should be completed during wet weather conditions to determine if the ponds are functioning properly.
 - 3. Inspection priorities shall be as follows:
 - a. Inspect the embankments for subsidence, erosion, cracking and tree growth.
 - b. Inspect the condition of the emergency spillway and overland flow path.
 - c. Inspect the pond for accumulation of sediment.
 - d. Inspect the outlet control structure for clogs, debris and material failures.
 - e. Inspect upstream and downstream channels from an erosion perspective.
 - f. Inspect any modifications that may have been done to the ponds following their initial construction.
 - g. Inspect the side slopes of the pond for erosion, slumping, cracking or woody plant materials.
 - 4. As-built plans shall accompany the person responsible for the pond inspections.
 - 5. Documentation of the inspections should be completed and filed. Documentation should include as a minimum:
 - a. Inspectors name, affiliation and professional credentials if applicable.
 - b. Date, time and weather conditions.
 - c. Approximate rainfall total over a 24 hour period if applicable.
 - d. Existing embankment, outlet and inlet conveyance systems and vegetation condition.
 - e. Sediment depth at the outlet control structure (in wet forebays) and at a minimum one other location.
 - f. Identification of potential structural failures and repair needs.
 - g. Other pond conditions such as vegetation growth, algae growth and emergency spillway conditions.
 - h. Repair recommendations.
- C. Debris and Litter Removal.
 - 1. Debris and litter removal from the pond surface shall be completed at least once a month.
 - 2. Particular attention should be paid to debris accumulating around the riser pipe to prevent potential clogging.
- D. Erosion Control.
 - 1. The pond side slopes, embankments and emergency spillways may suffer from periodic slumpage and erosion.
 - 2. Corrective measures shall include regrading, filling and revegetation of the eroded or slumping areas.
 - 3. Permanent geosynthetic erosion matting (or rip rap) at the pond outlet and emergency spillways should be inspected for displacement or undermining. Repairs shall be made upon discovery.
- E. Nuisance Control.
 - 1. Biological control of algae and mosquitoes is preferred over chemical control. Consultation with local WDNR officials is recommended prior to the introduction of any biological control.
 - 2. Maintaining the native grass perimeter will aide in the control of geese.
 - 3. Mechanical controls should be used when feasible.

II. NON-ROUTINE MAINTENANCE

- A. Structural Repairs and Replacement.
 - 1. The outlets of the pond have been constructed utilizing concrete or PVC pipe and concrete materials. The estimate life of these structures is 75 to 100 years. Annual inspection of the structures will disclose any potential structural problems. If structural problems appear, repair or replace the outlet.
 - 2. Excessive or chronic drawdowns of the ponds may cause leaks or seepage through the embankments. Excessive drawdowns should be avoided and thus corrective measures for leakage and seepage can be avoided.
- B. Sediment Removal.
 - 1. A sediment clean out cycle of 10 to 15 years is recommended. Sediment removal may be necessary prior to 10 years if there is a substantial amount of land disturbance occurring within the contributory watershed. Annual inspections shall be made to insure that the design depth of the permanent water pool is maintained.
 - 2. It is recommended that the sediment be tested to determine if land filling is necessary. Contact the local DNR prior to sediment sampling and testing to insure compliance with State standards and regulations.
 - 3. Surveyed depths of the sediment storage area and permanent pool elevations shall be made immediately following the construction of the ponds and recorded on the as-built plans. Annual inspections shall include measure downs to determine sediment elevations in relation to the permanent pool elevation.

III. RESPONSIBLE PARTY & FINANCIAL FUNDING

- A. The responsible party for the operation, inspection and maintenance of the wet ponds shall be 13050 Cleveland, LLC and their heirs and assigns.
- B. It is recommended that the 13050 Cleveland, LLC and/or their heirs and assigns establish or set aside a perpetual maintenance fund to insure that the ponds are properly inspected, maintained and repaired.

IV. ADDITIONAL CONSIDERATIONS TO IMPROVE POND WATER QUALITY AND REDUCE MAINTENANCE COSTS.

- A. General.
 - 1. Improper disposal of yard wastes will affect the water quality of the wet ponds and may cause clogging of the outlet structure.
 - 2. Improper fertilizer and pesticide application will affect the water quality of the wet ponds and add to algae growth.
 - 3. Excess lawn watering will affect the water quality of the ponds due to increased water runoff that may contain fertilizers and pesticides.
- B. Yard Care.
 - 1. It is recommended to consider routine yard care maintenance that is practical and environmentally sound.
 - 2. Refer to the U.W. Extension's "Rethinking Yard Care" for additional information.
- C. Leaves and Yard Trimmings.
 - 1. It is recommended that leaves and yard trimmings be properly disposed of.
 - 2. Refer to the U.W. Extension's "Managing Leaves and Yard Trimmings" for further information.
- D. Lawn and Garden Fertilizers.
 - 1. It is recommended to control fertilizer applications on lawn and gardens so as not to be detrimental to the water quality of the ponds.

- 2. Refer to the U.W. Extension's "Lawn and Garden Fertilizers" for further information.
- E. Lawn and Garden Pesticides.
 - 1. Lawn and garden pesticides may pollute surface and ground water.
 - 2. Refer to the U.W. Extension's "Lawn and Garden Pesticides" for further information.
- F. Lawn Watering.
 - 1. Excess lawn watering will wash pollutants into the wet ponds.
 - 2. Refer to the U.W. Extension's "Lawn Watering" for further information.
- G. Lawn Weed Control.
 - 1. Proper turf management will lower the amount of the chemicals that may runoff into the wet ponds during rain events.
 - 2. Refer to the U.W. Extension's "Lawn Weed Control" for further information.

STORM SEWER SYSTEM OPERATIONS AND MAINTENANCE

I. INSPECTION

A. Frequency

- a. Inspect catch basins, inlets and manholes at least once per year.
- b. Inspect storm sewer end sections at least twice per year and after major rainfall events.

B. Inspection

- a. Catch Basins, Inlets and Manholes
 - i. Inspect for sediment deposition in the bottom of structures.
 - ii. Check frames and lids for cracks and wear such as rocking lids or lids moved by traffic and for shifted frames.
 - iii. Check chimneys for cracked mortar, cracked lift rings and spalling.
 - iv. Check for leaks at joints.
 - v. Check surrounding areas for pollutants such as leaks from dumpsters, minor spills and oil dumping.
- b. Storm Sewer End sections
 - i. Observe for obstructions, accumulation of sediment and trash, undermining and joint separation.
 - ii. Inspect end treatment for settlement, scour and displaced armoring.

II. STANDARD MAINTENANCE

- A. Catch Basins, Inlets and Manholes
 - a. Repair any deterioration threatening structural integrity immediately.

- b. Replace worn or cracked frames and lids. Frames that have shifted should be re-centered and re-set on the structure.
- c. Repair any spalled or cracked mortar. Cracked rings should be repaired or replaced.
- d. Repair leaking joints.
- e. Clean manhole and storm inlet inverts of deposited material. Catch basins should be cleaned before the sump is 40 percent full.
- f. Remove potential sources of contamination away from catch basins, inlets and manholes.
- B. Storm Sewer End sections
 - a. End sections should be free flowing; trash, debris and obstructions should be removed to prevent backups.
 - b. End sections which have separated from the storm sewer pipe shall be reset on firm bedding and reconnected to the existing storm sewer pipe. Restrain joints if necessary.
 - c. Scour areas shall be repaired immediately. Replace missing soil with clean fill and replace/install end treatment. Missing armoring will require additional stone, typically one class larger.
 - d. Excessive material deposited at the storm sewer outfall is indicative of: a disturbed area upstream draining to the system or a potential failure of a system component. Disturbed areas draining to the system should be stabilized immediately or diverted to drain to a BMP. Potential system failures require non-standard maintenance.

III. NON-STANDARD MAINTENANCE

- A. Non-standard maintenance includes inspection, repair or replacement of buried structures.
 - a. Televising of buried structures (pipes) should occur when excessive material is found within the system or at an outfall with no apparent source area visible at the surface, or the system experiences frequent backups.
 - b. Follow the recommendations for the repair and/or replacement of system components televised by a firm specializing in this work.

CULVERTS OPERATION AND MAINTENANCE

I. INSPECTION

- A. Culverts should be inspected twice a year and after heavy rainfall.
- B. Inspect for sediment deposition, scour at the ends of pipe, accumulations of trash and obstructions.

II. MAINTENANCE

- A. Scour areas should be repaired with clean fill and replacement of end treatment (rip rap, TRM, etc.). Scour areas with no end treatment should be stabilized with topsoil, seed and erosion control mat at a minimum.
- B. Sediment deposits, trash and obstructions should be removed from the pipe ends.
- C. Material deposited within the pipe should be promptly removed to maintain the conveyance capacity of the pipe.

APPENDIX 6

Storm Water Sewer Calculations

Storm Sewer Summary Report

₋ine No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Pipe 1-2	12.81	24	Cir	30.735	57.50	57.70	0.651	58.99	58.99	n/a	58.99 j	End	Manhole
2	Pipe 2-3	13.27	24	Cir	241.624	57.70	58.50	0.331	59.24	60.04	0.44	60.48	1	Combination
3	Pipe 3-4	10.75	24	Cir	100.456	58.50	59.16	0.657	60.48	60.33	0.51	60.33	2	Combination
4	Pipe 4-5	7.36	18	Cir	98.363	59.66	60.15	0.498	60.79	61.28	0.21	61.49	3	Combination
5	Pipe 5-FUT BLDG	6.01	18	Cir	10.000	60.15	60.20	0.500	61.49	61.50	0.21	61.71	4	None
6	Pipe 3-PR BLDG	1.38	8	Cir	37.493	60.00	61.35	3.592	60.48	61.90	0.31	61.90	2	None
Project	File: 2018-05-23_STM SEWER C.	ALC.stm							Number	of lines: 6		Rur	Date: 5/29	/2018
NOTES	: Return period = 10 Yrs. ; j - Line	contains hy	/d. jump.											

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	DRIVEWAY	5.66	15	Cir	43.500	64.50	64.75	0.575	65.46	65.86	0.38	66.23	End	None
2	FIRE LANE	1.71	15	Cir	33.000	61.30	61.65	1.061	61.82	62.17	0.20	62.17	End	None
Projec	t File: 2018-05-24_STM CUL	/ERT CALC stm							Number	of lines: 2		Bun	Date: 5/29	/2018
	S: Return period = 10 Yrs.									or inico. 2		- Null	Date. 5/29	

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Pipe 1-2	17.90	24	Cir	30.735	57.50	57.70	0.651	58.99	59.22	0.54	59.22	End	Manhole
2	Pipe 2-3	18.32	24	Cir	241.624	57.70	58.50	0.331	59.70*	61.05*	0.57	61.62	1	Combination
3	Pipe 3-4	14.75	24	Cir	100.456	58.50	59.16	0.657	61.62*	61.99*	0.36	62.35	2	Combination
4	Pipe 4-5	10.05	18	Cir	98.363	59.66	60.15	0.498	62.35*	63.11*	0.25	63.37	3	Combination
5	Pipe 5-FUT BLDG	8.20	18	Cir	10.000	60.15	60.20	0.500	63.37*	63.42*	0.33	63.75	4	None
6	Pipe 3-PR BLDG	1.88	8	Cir	37.493	60.00	61.35	3.592	61.62*	62.40*	0.45	62.85	2	None
Project	File: 2018-05-23_STM SEWER (CALC.stm							Number	of lines: 6		Rur) Date: 5/29	/2018
NOTES	: Return period = 100 Yrs. ; *Sur	charged (HG	L above crow	n).								I		