

PROJECT: PHASE I – COMMERCIAL ALTERATION & ADDITION

ADDRESS: 425 E. BROADWAY WAUKESHA, WI 53186

CLIENT: EAST COAST HAIR DESIGN 425 E. BROADWAY WAUKESHA, WI 53186

SCOPE: CALCULATION PACKAGE FOR COMMERICAL ALTERATION AND ADDITION PER THE WISCONSIN UNIFORM BUILDING CODE. EXISTING STRUCTURE VERIFIED AS NEEDED.

FRONT AND BACK REMODEL MEMBERS ARE SIZED FOR POTENTIAL 3RD STORY ADDITIONS.

ENGINEER OF RECORD: VINCENT M. MATARRESE, PE

LICENSE: E-45530

VM Engineering LTD - 2412 Tanager Ct. Waukesha WI C (262) 364-8744 Vince@VMproeng.com

PROJECT: FIRST FLOOR HEADER ADDRESS: 425 E BROADWAY DATE: 4/27/2020

ASD DESIGN FORCES			L=	29	FT					
EQ. DIST LOAD	605	PLF								
END REACTION	8772.5	#								
SHEAR	8772.5	#								
MOMENT	63600.6	#-FT								
(SIZED FOR THIRD STORY AL	DDITION W/	BEARING	G)							
DESIGN STEEL BEAM:	005									
vva =	605	pir								
L =	29	п								
TRIAL:	W 10x49		т	ABLE 3	-2 AIS	C 14th I		(SEE ATT	ACHED R	EF.)
Vn/Ω =	68	kips		>		Va=	8.77	lbs	OK	,
Mn/Ω =	99.5	kips*ft		>		Ma=	63.60	kips*ft	OK	
CHECK DEFLECTION										
E=	29000	ksi			Δ=		1.22	in		
=	272	in4			L/		285	OK		
	USE: W1	0x49 S	TEEL	BEAM						

DESIGN STEEL COLUMN:

Pu = 26.3 kips

TRIAL:4in. Dia.TABLE 4-6 AISC 14th EDITION (SEE ATTACHED REF.)•Pn =45.1kips>26.32 kipsOK

USE:4 in. DIA. STEEL STANDARD PIPE COLUMN

VICT MATURES, P.E.
Project: Two + Soil PressuresVICATE MATURES, P.E.
Project Address:
$$\frac{425 \ E. \ BroadburgVICATE MATURES, P.E.Project Address: $\frac{425 \ E. \ BroadburgVICATE MATURES, P.E.Project MaturesVICATE MATURES, P.E.Project Matures$$$$$$$$$$$$$$$

2nd Floor, kitchen header 12' 2 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2746 @ 3 1/2"	7438 (5.00")	Passed (37%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2112 @ 1' 2 1/4"	6151	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	6559 @ 5' 5"	11204	Passed (59%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.145 @ 5' 5"	0.342	Passed (L/850)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.296 @ 5' 5"	0.512	Passed (L/415)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 10' 10" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 10' 10" o/c based on loads applied, unless detailed otherwise.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Stud wall - SPF	5.00"	5.00"	1.85"	1405	1300	488	3193	Blocking
2 - Stud wall - SPF	5.00"	5.00"	1.85"	1405	1300	488	3193	Blocking
Disables Development and the second second second	مريام المحالية	مطلب مربع والم	اربك وحاط او مرد ا	المحملة محملا		بملم معالم ما مرجا	dama a d	

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 10' 10"	N/A	9.4			
1 - Uniform (PSF)	0 to 10' 10" (Top)	3'	15.0	40.0	-	3rd floor
2 - Uniform (PSF)	0 to 10' 10" (Top)	3'	15.0	40.0	30.0	Roof
3 - Uniform (PLF)	0 to 10' 10" (Top)	N/A	160.0	-	-	Wall Wt

Member Notes

Kitchen header at existing bldb ext.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by VMM

ForteWEB Software Operator	Job Notes
Vince Matarrese VM Engineering LTD (262) 364-8744 Vince@VMproeng.com	Commercial Alteration and Addition

			MWI	FRS Wind	Loads			Job No:			
		Fredere	d C. Doutially	ASCE 7-10	ildiana of A	11		Designer:			
	Address	: 425 E. Bro	adway	ETICIOSEU BI	ullulliys of A	ii Heights		Date:	4/27/2020		
			,						.,,		
asic Parameters											
isk Category		II						Table 1.5-1	L		
asic Wind Speed, V		115 mph						Figure 26.5	5-1A		
Vind Directionality Factor	r, K _d	0.85						Table 26.6	-1		
xposure Category		В						Section 26	.7		
opographic Factor, K _{zt}		1.00						Section 26	.8		
ust Effect Factor, G or G	f	0.850						Section 26	.9		
nclosure Classification		Enclosed						Section 26	.10		
nternal Pressure Coefficie	ent, GC _{pi}	+/- 0.18						Table 26.1	1-1		
errain Exposure Constan	t,α	7.0						Table 26.9	-1		
errain Exposure Constan	t, z _g	1,200 ft						Table 26.9	-1		
Vall Pressure Coefficient	ts										
Vindward Wall Width, B		30 ft									
ide Wall Width, L		74 ft									
/B Ratio		2.47									
Vindward Wall Coefficier	nt, C _p	0.80						Figure 27.4	l-1		
eeward Wall Coefficient,	Cp	-0.28	-0.28						Figure 27.4-1		
ide Wall Coefficient, C _p		-0.70						Figure 27.4	-1		
oof Pressure Coefficient	ts										
oof Slope, θ		35.0°									
1edian Roof Height, h		30 ft									
elocity Pressure Exposur	e Coef., K _h	0.70						Table 27.3	-1		
elocity Pressure, q _h		20.2 psf						Equation 2	7.3-1		
/L Ratio		0.41						·			
/indward Roof Area		0 ft ²									
oof Area Within 15 ft of	WW Edge	0 ft^2									
		Horiz	Distance Fro	m Windwar	d Edae	1					
Location	Min/M	0 ft	15 ft	30 ft	60 ft						
Windward Roof Coeffi	cient Min	.0.12	_0.12	_0.12	_0 12			Figure 27 /	1_1		
Normal to Ridge, C		0.12	0.12	0.34	0.34			inguie 27.4	· -		
Leeward Roof Coeffic	ient Min	-0.60	-0.60	-0.60	-0.60						
Normal to Ridge. C		-0.60	-0.60	-0.60	-0.60	1					
D (C (11)	P IVIAA	0.00	0.00	0.00	0.00						
Root Coefficient		-0.90	-0.90	-0.50	-0.30						
Parallel to Ridge, C	- _p Max	-0.18	-0.18	-0.18	-0.18	J					
tructure Pressure Summ	nary (Add Interna	l Pressure q,G	ՅC _{pi} or զ _հ GC _p	_i as Necess	ary)			1			
	I					Roof					
Height, z K z	q _z	W	alls	C : 1	Normal	to Ridge	Parallel	Inte	ernal		
0.6 0.57 4	WW	LW	WW + LW	Side	WW	LW	to Ridge	Positive	Negative		
0 ft 0.5/ 1	11.2 p	ST	16.0 pst	-				3.6 pst	-		
3 tt 0.57 1	11.2 pt 11.2 p	st	16.0 psf]	Min:	Min:	Min:	3.6 pst			

0.10	0.07	1010 poi	1112 poi		2010 001					818 psi	
3 ft	0.57	16.5 psf	11.2 psf		16.0 psf		Min:	Min:	Min:	3.6 psf	
6 ft	0.57	16.5 psf	11.2 psf		16.0 psf		-2.1 psf	-10.3 psf	-15.4 psf	3.6 psf	
9 ft	0.57	16.5 psf	11.2 psf		16.0 psf					3.6 psf	
12 ft	0.57	16.5 psf	11.2 psf		16.0 psf					3.6 psf	
15 ft	0.57	16.5 psf	11.2 psf	-4.7 psf	16.0 psf	-12.0 psf				3.6 psf	-3.6 psf
18 ft	0.61	17.4 psf	11.8 psf		16.6 psf					3.6 psf	
21 ft	0.63	18.2 psf	12.4 psf		17.1 psf		Max:	Max:	Max:	3.6 psf	
24 ft	0.66	18.9 psf	12.9 psf		17.6 psf		5.8 psf	-10.3 psf	-3.1 psf	3.6 psf	
27 ft	0.68	19.6 psf	13.3 psf		18.0 psf					3.6 psf	
30 ft	0.70	20.2 psf	13.7 psf		18.5 psf					3.6 psf	

	Project: WIND CALL - REAR ADDITION
	Address: 425 E. BROADWAY
Vincent Matarrese, P.E. Professional Engineering Services P262-364-8744 Vince@VMproeng.com	Date: 4/25/20 Page: By:
Bear wall $W = 271-3"$, SIDE WALL = 18-0"
SW NT=7-6" SW	$1 \leq A_{su} = 13', B_{1su} = 5^{2}b'', B_{2su} = 5^{2}b''$
PiWARCA = 286 sg 5+	$C_{RW} = 4' C_{RWZ} = 4''$
SWAREA = 16 5 53.5%.	
SIDE WALLA :	
Pw=13.5psf E=13.5.1/2 USE 15/32 W/102	·286=1930# VW =1930/13 = 150 plf NAMS & 6" D.C. PANEL EDGES JALL = 280
HD TENSION, T= 150plfx7. USE SIMPSON MS CKEND STUDS (See At-	5' = 1/25 #, CIR SPAN = 9.25+0.75+4.5=14.5" TC 40 w/ (32) 162 SMKERS TOTAL, Tall=3,080 # Hached) USE (2) 2×6 STUD3
SIDE WALL B:	
$Pw = 13.5psf$ $F_{10} = 1930$	$5 \# Vw = \frac{1930}{(5-6'+5-8'')} = 175pif$
11	~
HD TENSION, T=175 PIFx 7	.5' = 1315 [#] , CIRSP. = 14.5"
REAR WALL:	
$P_{w} = 18 \text{ psf}$ $F_{w} = 18 \times \frac{1}{2} \times 10$	$65 = 1485^{\#}, \nabla w = \frac{1485^{\#}}{6} = 186 plf$
UN T 1450# 11	
TID LEASION, 1 - 1700", LIF	
//	

SHEAR WALL END STUDS

# of studs	2
Stud Width (dy)	3.00 in
Stud Depth (dx)	3.50 in
Stud Length (L)	8.00 ft
Stud Spacing	16 in
Stud Species and Grade	2X4 DF Stud
Top/Sill Plt. Species	HF
Design Values	
Fb	700 psi
Fc	850 psi
Fc⊥	405 psi
E	1,400,000 psi
Emin	510,000 psi
CF_b	1.10
CF_c	1.05
A	21.00 in ²
Sx	12.25 in ³
lx	21.44 in ⁴
Ct_c	1.00
CM_c	1.00
Cic	1.00

Load Case 1: Gravity Loads Only

ly (unbraced length)	8.0	ft
CD	1.60	(Wind/Seismic)
(le/d)y	32.00	(governs)
(le/d)x	27.43	
E'min	510,000	psi
FcE	409.39	psi
Fc*	1428.00	psi
с	0.80	sawn lumber
FcE/Fc*	0.287	
1 + FcE/Fc*/2c	0.804	
Ср	0.267	
Fc'	381.57	psi
fc	285.71	psi
CSI (axial)	0.75	ок

Bearing on Stud Wall Plates

CSI (bearing)	0.71 OK
fc⊥	285.71 psi
Fc⊥'	405.00 psi
Cb	1.00 (conservative)
lb	3.00 in

Deflection

E'	1,400,000	psi
ΔWIND (.42C&C)*	0.18	in
L/d**	522	ок
*IBC 2015 Sec. 1604.3		
**IRC 2015 Sec. 301.7		

Vertical Loads		
Wall LL (wLL)	423.5	plf
Wall DL (wDL)	366.85	plf
Wall DL (wTL)	790.35	plf
Trib. Length	1.33	ft

Рс

6000.00 lbs

Lateral Loads (Wind MWFRS)

Wind Load (windward wall)	38.72 psf
MWFRS Wind Load ASD	23.23 psf
Wind Atrib	10.67 ft ²
W	247.81 lbs
W	25.00 plf

Lateral Loads (Wind C&C)

Wind Load (Zone 4)	53.43 pst
CC Wind Load ASD	32.06 pst
W	341.95 lbs
w	42.74 plf

Load Case 2: Lateral Loads Only (Wind C&C)

CSI (bending C&C)	0.24 OK
fbx	334.97 psi
	4103.42 in-lbs
Mmax	341.95 ft-lbs

Load Case 3: Gravity Loads and Lateral Loads

CD	1.60	(Wind/Seismic)
Mmax	200.00	ft-lbs
	2400.00	in-lbs
CL	0.99	
Cr	1.15	@ 16 O/C
Fbx'	1403.67	psi
fbx	195.92	psi
CSI (bending MWFRFS)	0.14	ок

Combined Stress

n values with CD = 1.6)
557.23 psi
409.39 psi
1428.00 psi
0.80 sawn lumber
0.287
0.804
0.267
381.57 psi

 $\left(\frac{f_c}{F_c^{'}}\right)^2 + \left(\frac{1}{1 - \frac{f_c}{F_{cEx}}}\right) \left(\frac{f_{bx}}{F_{bx}^{'}}\right) =$

0.15 OK

Load Case: LC5

*LCMAX takes 100% of all loads for axial and bending.

DOUBLE 2X STUDS AT SHEARWALL ENDS ARE ACCEPTABLE

0.18 in 522 OK

HST/MST/MSTC/MSTA

Strap Ties

Codes: See p. 14 for Code Reference Key Chart

These products are available with additional corrosion protection. For more information, see p. 18.

Floor-to-Floor Clear Span Table

	Model	Clear Span	Fasteners	Allowable Tension Loads (DF/SP)	Allowable Tension Loads (SPF/HF)
	NO.	(in.)	(Iotal)	(160)	(160)
P		18	(26) 10d	2,020	2,020
	MSTA49	16	(26) 10d	2,020	2,020
		18	(12) 16d sinkers	1,155	995
	MSTC28	16	(16) 16d sinkers	1,540	1,325
ł		24	(20) 16d sinkers	2,310	1,985
	MSTC40	18	(28) 16d sinkers	2,695	2,320
		16	(32) 16d sinkers	3,080	2,650
	Ý 0	24	(36) 16d sinkers	3,465	2,980
	MSTC52	18	(44) 16d sinkers	4,235	3,645
		16	(48) 16d sinkers	4,620	3,975
	7	30	(48) 16d sinkers	4,780	4,120
	1107000	24	(54) 16d sinkers	5,380	4,640
	MSIC66	18	(64) 16d sinkers	5,860	5,495
		16	(68) 16d sinkers	5,860	5,840
	/	30	(64) 16d sinkers	5,860	5,495
	MSTC78	24	(72) 16d sinkers	5,860	5,860
		18	(76) 16d sinkers	5,860	5,860
	7	24	(14) 16d	1,725	1,495
	MST37	18	(20) 16d	2,465	2,135
		16	(22) 16d	2,710	2,345
	· · · ·	24	(26) 16d	3,215	2,780
	MST48	18	(32) 16d	3,960	3,425
		16	(34) 16d	4,205	3,640
	F	30	(34) 16d	4,605	3,995
3	MST60	24	(40) 16d	5,240	4,700
		18	(46) 16d	6,235	5,405
	1	30	(48) 16d	6,505	5,640
5	MST72	24	(54) 16d	6,730	6,345
		18	(62) 16d	6,730	6,475

These products are approved for installation with the Strong-Drive®

Installation Showing a Clear Span

SD Connector screw. See pp. 39-40 for more information.

SIMPSON

Stronovine

See footnotes below.

	Model		Dimer (it	nsions n.)	Fas (T	teners otal)		Allowable Ti (DF	ension Loads /SP)	Allowable Te (SPF	ension Loads F/HF)	Code
	No.	Ga.				Bo	lts	Nails	Bolts	Nails	Bolts	Ref.
		'	W	L	Nails	Qty.	Dia.	(160)	(160)	(160)	(160)	1
5	MST27		21/16	27	(30) 16d	4	1/2	3,700	2,165	3,200	2,000	
	MST37	12	21/16	371/2	(42) 16d	6	1/2	5,080	3,025	4,480	2,805	
	MST48	1	21/16	48	(50) 16d	8	1/2	5,310	3,675	5,190	3,410	1
8	MST60		21⁄16	60	(68) 16d	10	1/2	6,730	4,485	6,475	4,175	
	MST72	10	21/16	72	(68) 16d	10	1/2	6,730	4,485	6,475	4,175	14, 13 Fi
8	H\$T2	-	21/2	211/4		6	5%		5,220		4,835	
3	HST5	1 1	5	211/4	-	12	5/8		10,650		9,870	
	нѕ⊤з	2	3	251⁄2	_	6	3/4	—	7,680		6,660]
	HST6	3	6	251/2	_	12	3/4		15,470	— —	13,320	

1. Allowable loads have been increased for wind or seismic loading with no further increase allowed; reduce where other loads govern.

Install bolts or nails as specified by Designer. Bolt and nail values may not be combined.

3. Allowable bolt loads are based on parallel-to-grain loading and these minimum member thicknesses:

MST - 21/2"; HST2 and HST5 - 4"; HST3 and HST6 - 41/2".

4. Splitting may be a problem with installations on lumber smaller than 31/2"; either fill every nail hole with 10d x 11/2" nails or

fill every-other hole with 16d common nails. Reduce the allowable load based upon the size and quantity of fasteners used.

5. Use half of the required nails in each member being connected to achieve the listed loads.

6. When installing strap over wood structural panel sheathing, use 21/2" long nail minimum.

7. Tension loads apply for uplift as well when installed vertically.

8. Nails: 16d = 0.162" dia. x 3½" long, 16d sinker = 0.148" dia. x 3¼" long, 10d x 1½" = 0.148" dia. x 1½" long. See pp. 26–27 for other nail sizes and information.

Straps and Ties

Node	Result Case	X 4	۳ ک	¥ а	t e	₽ ⁴
N001	2. D+L	0.0000	0.0000	-3750.8144	10439.5449	1401.258
1000	X+M	0.0000	0.0000	-510.1464	-1170.1092	2546.4337
NUN6	2. D+L	0.0000	0.0000	3750.8144	10439.5449	-1401.258
	2. D+I	-0.0168	-0.0008	0.0000	0.0000	0.000
NOOR	6 D+0 75(1+0.6W+1r) »+X	0.0216	-0.0007	0.0000	0.0000	0.000
N010	2. D+L	-0.0001	-0.0196	0.0000	0.0000	0.000
ULUN	X+M	0.0192	0.0015	0.0000	0.0000	0.000

Model Check Information No errors were found in your model.

	2						C. D. M.	THE WAY DO NOT CHARLEN THE PARTY		1 totto		
Name	Node 1	Node 2	Shape	Material	End Connection	Crossing Connection?	Beta, B deg	ft	height	Ornset y	Cliset 2 ria	6
BmX001	ND03	600N	LVL 3.5x14	Microllam LVL 1.9E (Beam)	RZ1	Yes	0.0000	3.0000	31.7520	0.0000	0.0000 Beam	Normal
RmX002	CUUN	NOO5	LVL 3.5x14	Microllam LVL 1.9E (Beam)	RZ1,RZ2	Yes	0.0000	16.0000	169.3440	0.0000	0.0000 Beam	Normal
RmX003	600N	NO10	LVL 3.5x14	Microllam LVL 1.9E (Beam)	Rigid Connect	Yes	0.0000	10.0000	105.8400	0.0000	0.0000 Beam	Normal
RmX004	NOTO	N004	LVL 3.5x14	Microllam LVL 1.9E (Beam)	RZZ	Yes	0.0000	3.0000	31.7520	0.0000	0.0000 Beam	Normal
COI 001	NOOI	N002	PSL-C 7x7	Parallam PSL 1.8E (Column)	Rigid Connect	Yes	0.0000	1.7500	18.5220	0.0000	0.0000 Colun	in Normal
	NUUS	NOOT	DSI-C7X7	Microllam LVL 1.9E (Beam)	Rigid Connect	Yes	0.0000	2.8333	29.9880	0.0000	0.0000 Colur	in Normal
	ZUUN	CUUN	PSI-C 7x7	Microllam LVL 1.9E (Beam)	Rigid Connect	Yes	0.0000	7.2500	76.7340	0.0000	0.0000 Colur	in Normal
	NUC	NOOR	PSI-C 7x7	Parallam PSI 1.8E (Column)	Riaid Connect	Yes	0.0000	1.7500	18.5220	0.0000	0.0000 Colur	nn Normal
	N004	NOOR	PSI-C 7x7	Microllam LVL 1.9E (Beam)	Rigid Connect	Yes	0.0000	2.8333	29.9880	0.0000	0.0000 Colur	in Normal
	NDOB	NOOS	PSL-C 7x7	Microllam LVL 1.9E (Beam)	Rigid Connect	Yes	0.0000	7.2500	76.7340	0.0000	0.0000 Colur	nn Normal
V001	NOO7	600N	FS 2x14	Douglas Fir-Larch-No.2	RZ1,RZ2	Yes	0.0000	4.1265	24.9569	0.0000	0.0000 Braci	ng Normal
V002	NOTO	N008	FS 2x14	Douglas Fir-Larch-No.2	RZ1,RZ2	Yes	0.0000	4.1265	24.9569	0.000	0.0000 Braci	ng Normal

Member Loads, Concentrated

Member	Service Case	Direction		f
BmX003	W+X	Force Y	-1125.0000 lb	2.9167

Page 1 of 3

		dl 0000.521		Force Y		X+M	N004
	N.N.	125.0000 lb		Force Y		X+X	N003
	N.A. M A	65.0000 lb	5	Force X		X+M	N003
			ection	Iype & Uir	vice Case	Ser	Node
rredefined Load		britinneM		i c			Nodal Loads
N.A.	3.0000 No	0.0000	Yes	-676.0000 lb/ft	Force Y	L	BmX004
N.A.	3.0000 No	00000	Yes	-232.0000 lb/ft	Force Y	٥	BmX004
N.A.	10.0000 No	0.0000	Yes	-676.0000 lb/ft	Force Y	_	BmX003
N.A.	10.0000 No	0.0000	Yes	-232.0000 lb/ft	Force Y	۵	BmX003
N.A.	16.0000 No	0.000	Yes	-275.0000 lb/ft	Force Y	_	BmX002
N.A.	16.0000 No	0.000	Yes	-82.0000 lb/ft	Force Y	۵	BmX002
N.A.	3.0000 No	0.0000	Yes	-676.0000 lb/ft	Force Y	L	BmX001
N.A.	3.0000 No	0.0000	Yes	-232.0000 lb/ft	Force Y	٥	BmX001
	End Unset Frugetted:	start Unset ft	Full Length?	Magnitude	Direction	Service Case	Member
Dradafinad I nad					1	s, Uniform	Member Load
ft 7.9167	Aagmitude	1125.0000 lb	Direction	Lase Force Y	Service (+X	mber	Mer BmX003
Officer	1, r, d.				(continued)	ls, Concentrated	Member Load
VM ENGINEERING VINCE MATARRESE Iculation\FRAME MODEL.vap day, April 27, 2020 7:12 AM	Charlie Bianco\425 E Broadway\Cal Mon	ce\Documents\VM ENG\\	C:\Users\Vin				

Member For	can						Ad. , Mari	M7 Min	M7 Max
Member	Fx Min Ib	Fx Max Ih	≩₹	2 4	Torsion Ib-ft	My Min Ib-ft	Ib-ft	lb-ft	lb-ft
		EKONE REFE (5)	2940.6720 (5)	0.0000 (10)	0.0000 (10)	0.0000 (10)	0.0000 (10)	0.0000 (8)	11762.6880 (5)
	-1864 5411 (5)	-295 1144 (10)	-4592.9200 (5)	0.0000 (10)	0.0000 (10)	0.0000 (10)	0.0000 (10)	-3145.1966 (3)	15894.8344 (5)
CUUXIN	(c) ITLC:LC01-	(cr) 1111002	-2848 7208 (5)	0.0000 (10)	0.0000 (10)	0.0000 (10)	0.0000 (10)	-3145.1966 (3)	4412.5344 (5)
BmX004	403.1906 (1U)	(C) 1020:0262	3750 8144 (5)	0.0000 (10)	0.0000 (10)	0.0000 (10)	0.0000 (10)	-2546.4337 (3)	5162.6667 (5)
COLUUI	(c) ###C'#C*0T-	(c) 7601.0/11		0,0000 (10)			0.0000 (10)	-1401.2585 (5)	5162.6667 (5)
COL004	-10439.5449 (5)	-1170.1092 (3)	(c) ##T8.0c/2-	(NT) NNNN'N	(AT) AAAAA	101 00000			0,0000 (3)
COLOOS	-2878.7091 (5)	-76.6012 (3)	-2923.3258 (5)	0.0000 (10)	0.0000 (10)	0.0000 (10)	0.0000 (10)	(c) +0c/"7878-	(c) 0000'0
V002	-6580.4802 (5)	-1040.6520 (10)	-9.0720 (5)	0.0000 (10)	0.0000 (10)	0.0000 (10)	0.0000 (10)	0.0000 (5)	9.3588 (7)
	a start present strategy and a start of a start of the st	the second							

Page 2 of 3

Node Reactions			2	M7
Node	Result Case	¥ ج	<u> </u>	B-ft
	2 DHI	-3750.8144	10439.5449	1401.2585
TOON	2. UTL V V	-510.1464	-1170.1092	2546.4337
100N	X+W	3750.8144	10439.5449	-1401.258
N006	2. D+L			

MPBZ

SIMPSON Strong-Tie

Moment Post Base

The patent-pending MPBZ is specifically designed to provide

Bases and Caps

moment resistance for columns or posts. An innovative overlapping sleeve design encapsulates the post, helping to resist rotation around its base. It is available for 4x4, 6x6 and 8x8 posts. The MPBZ is ideal for outdoor structures, such as carports, fences and decks. Built-in stand-off tabs provide the required 1" stand-off to resist decay of the post while eliminating multiple parts and assembly. Additionally, the MPBZ is available in ZMAX® as the standard finish to meet exposure conditions in many environments.

Features:

- Internal top-of-concrete tabs
- 1" standoff tabs
- · Additional holes provided to attach trim material
- · Weep hole provided for water drainage

Material: 12 gauge

Finish: ZMAX coating

Installation:

- Use all specified fasteners; see General Notes.
- Install MPBZ before concrete is placed using embedment level indicators and form board attachment holes.
- · Place post on tabs 1" above top of concrete.
- Install Strong-Drive SDS Heavy-Duty Connector screws, which are supplied with the MPBZ. (Lag screws will not achieve the same load.)
- · Concrete level inside the part must not exceed 1/4" above embedment line to allow for water drainage.
- · Annual inspection of connectors used in outdoor application is advised. If significant corrosion is apparent or suspected, then the wood, fasteners and connectors should be evaluated by a qualified engineer or inspector.

Codes: See p. 12 for Code **Reference Key Chart**

MPB88Z (MPB44Z, MPB66Z similar) **U.S Patent Pending**

MPB44Z

Reinforced Concrete Footing

Footing (size and reinforcement) by Designer.

Standard hook geometry in accordance with ACI 318 unless noted otherwise.

Typical MPB66Z Non-Reinforced Installation (others similar)

MPB66Z **Reinforced Concrete Footing** Footing (size and reinforcement) by Designer. Standard hook geometry in accordance with ACI 318 unless noted otherwise.

These reinforced MPBZ details are available on strongtie.com/mpbz.

MPBZ

C-C-2019 @2019 SIMPSON STRONG-TIE COMPANY INC.

Moment Post Base (cont.)

These products are available with additional corrosion protection. For more information, see p. 15.

			Dim	anci				C	oncrete Allo	wable Loa	ıds		Wood As Lo	ssembly All bads (DF/SP	owable ')	Rotational	
	Model No.	Nominal Column	UIII	(in.)	ліэ	Strong-Drive® SDS Screws	Upl	ift	Later	al F1	Mome (ftl	nt M b.)	Download	Download	Moment M	Stiffness (inlb./	Code Ref.
		SIZE	W1/ W2	D	H		Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	(100)	(160)	(ftlb.) (160)	Tau.j	
			1				6	N	on-Reinforc	ed Concre	ete						
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							Wind and	d Seismic De	esign Cate	gory A&B						T
	MPB44Z	4x4	3%6	71/4	71/4	(16) ¼" x 21/2"	4,900	3,820	1,750	1,225	1,350	945	6,240	6,410	1,540	1,245,000	IBC,
	MPB66Z	6x6	5%6	71/4	71/4	(24) ¼" x 21/2"	5,815	5,815	3,435	2,405	2,680	1,875	9,360	10,855	3,730	2,405,000	IFL, LA
	MPB88Z	8x8	7%	71/4	71/4	(36) ¼" x 3"	9,945	6,960	7,200	5,560	4,160	2,910	15,120	17,585	4,525	5,500,000	-
-								Sei	smic Design	Category	C-F					1	1
	MPB44Z	4x4	3%6	71/4	71/4	(16) 1/4" x 2 1/2"	4,785	3,350	1,535	1,075	1,180	830	6,240	6,410	1,540	1,245,000	IBC,
	MPB66Z	6x6	5%6	71/4	71/4	(24) 1/4" x 21/2"	5,815	5,815	3,015	2,110	2,055	1,645	9,360	10,855	3,730	2,405,000	FL, LA
	MPB88Z	8x8	7%	71/4	71/4	(36) ¼" x 3"	7,420	6,100	6,965	4,875	3,470	2,550	15,120	17,585	4,525	5,500,000	1-
0 -	100								Reinforced	Concrete							
		Contraction of the						Wind an	d Seismic D	esign Cat	egory A&B	and the second second					100 TO
	MPB44Z	4x4	3%	71/4	71/4	(16) ¼" x 2½"	4,900	3,820	1,750	1,225	1,540	1,540	6,240	6,410	1,540	1,245,000	
	MPB66Z	6x6	5%	71/4	71/4	(24) 1/4" x 2 1/2"	5,815	5,815	3,435	2,405	3,730	3,190	9,360	10,855	3,730	2,405,000	-
	MPB882	8x8	7%	71/4	71/4	(36) 1/4" x 3"	9,945	6,960	7,200	5,560	4,525	4,525	15,120	17,585	4,525	5,500,000	1
2-	102- 318	ALL THE	A STATE OF		Sur al			Se	ismic Design	Category	y C-F						
	MPB44Z	4x4	3%	71/4	71/4	(16) 1/4" x 21/2"	4,785	3,350	1,535	1,075	1,540	1,540	6,240	6,410	1,540	1,245,000	1
	MPB662	6x6	5%	714	71/4	(24) 1/4" x 2 1/2"	5,815	5,815	3,015	2,110	3,350	2,795	9,360	10,855	3,730	2,405,000	-
	MPB887	Z 8x8	7%	71/4	71/4	(36) 1/4" x 3"	7,420	6,100	6,965	4,875	4,525	4,525	15,120	17,585	4,525	5,500,000)

1. Loads may not be increased for duration of load.

2. Higher download can be achieved by solidly packing grout in the 1" standoff area before installation of the post. Allowable download shall be based on either the wood post design or the concrete design calculated per code.

3.

Concrete shall have a minimum compressive strength of $f_c = 2,500$ psi. Tabulated rotational stiffness accounts for the rotation of the base assembly attributable to deflection of the connector, fastener slip, and post deformation. 4. Designer must account for additional deflection attributable to bending of the post.

To obtain LRFD values, multiply ASD seismic load values by 1.4 and wind load values by 1.67 (1.6 for 2012 IBC) 5

In accordance with IBC, Section 1613.1, detached one- and two-family dwellings in Seismic Design Category (SDC) C may use "Wind and SDC A&B" 6. allowable loads.

7

Foundation dimensions are for anchorage only. Foundation design (size and reinforcement) by Designer. Allowable load shall be the lesser of the wood assembly or concrete allowable load. To achieve full wood assembly allowable moment loads, additional 8. concrete design and reinforcement by Designer is required.

For loading simultaneously in more than one direction, the allowable load must be evaluated using the following equation: (Design Uplift / Allowable Uplift, 9 or Design Download / Allowable Download) + (Design Moment / Allowable Moment) + (Design Lateral / Allowable Lateral) ≤ 1.0.

10. To account for shrinkage up to 3%, multiply rotational stiffness by 0.75. Reduction may be linearly interpolated for shrinkage less than 3%.

11. Tabulated load values may be used for rough sawn lumber or larger size posts without reduction factors. Rough-size and larger-size posts shall be planed uniformly on all four sides such that center line of post is concentric with the center line of MPBZ.

Footing (size and reinforcement) by Designer. Standard hook

geometry in accordance with ACI 318 unless noted otherwise.

SIMPSON

Strong-Tie

DESIGN PROPERTIES

			No. of Art	and the		1	S. 1883 S.	Depth		1.5		1. 19		
Grade	Width	Design Property	4 ³ /8"	51⁄2"	5½" Plank Orientation	7¼"	91⁄4"	91⁄2"	111⁄4"	117/8"	14"	16"	18"	20"
a state of	State State	State of the second			Timber	Strand® L	.SL	a the state	and the second			- APRILLE		
	1.00	Moment (ft-lbs)	1,735	2,685	1,780	4,550								
	100	Shear (lbs)	4,340	5,455	1,925	7,190								
1.3E	31/2"	Moment of Inertia (in.4)	24	49	20	111								
		Weight (plf)	4.5	5.6	5.6	7.4								
1000	11 - 25	Moment (ft-lbs)		1.1.1.1.1.1.1		Sara Sa	140 100	5,210		7,975	10,920	14,090		1 Stand
		Shear (lbs)	1200		- Charles and the		1. March	3,435		4,295	5,065	5,785		1
	13/4"	Moment of Inertia (in.4)	ed the set	No. Contraction	A Contraction			125		244	400	597		99 ²¹
	ale Cak	Weight (nlf)	1.	P. Contraction		Sec. 1	12.200	5.2		6.5	7.7	8.8		181
1.55E	-	Moment (ft-lbs)						10,420		15,955	21,840	28,180		
	1925	Shear (lhs)						6,870		8,590	10,125	11,575		
	31/2"	Moment of Inertia (in.4)						250		488	800	1,195		
	26.00	Weight (nlf)						10.4		13	15.3	17.5		
		HorBut (hu)		Section Section	Micr	ollam® LV	1	ALL						
Corp.	Contraction of Contractor	Moment (ft-lbs)		2,125		3,555	5,600	5,885	8,070	8,925	12,130	15,555	19,375	23,580
	1.1.2.2	Shear (lhs)		1.830		2,410	3,075	3,160	3,740	3,950	4,655	5,320	5,985	6,650
2.0E	13/4"	Moment of Inertia (in 4)	Service and	24		56	115	125	208	244	400	597	851	1,167
		Weight (nif)		2.8		3.7	4.7	4.8	5.7	6.1	7.1	8.2	9.2	10.2
an we do not		Worght (pil)	STATISTICS IN COMPANY		Par	allam® PS		1						
		Moment (ft-lbs)					12,415	13,055	17,970	19,900	27,160	34,955	43,665	
	N. S. Bala	Shear (lbs)		+			6.260	6,430	7,615	8,035	9,475	10,825	12,180	
	31/2"	Moment of Inertia (in 4)					231	250	415	488	800	1,195	1,701	
	A. S. S. S.	Weight (nlf)					10.1	10.4	12.3	13.0	15.3	17.5	19.7	
		Moment (ft_lbc)	Cale Balling	1233350	C 2000000000	C. C. C. Ale	18,625	19.585	26,955	29,855	40,740	52,430	65,495	1. Sugar
	Section .	Shoar (lbc)	-	-		Contraction of the	9.390	9.645	11.420	12,055	14,210	16,240	18,270	a start
2.0E	51/4"	Moment of Inertia (in 4)				1000	346	375	623	733	1,201	1,792	2,552	1.1.1.1
	536.51	Weight (nlf)				1.000	15.2	15.6	18.5	19.5	23.0	26.3	29.5	
	-	Moment (ft_lhs)					24.830	26,115	35,940	39,805	54,325	69,905	87,325	
		Shoar (lbs)					12.520	12.855	15,225	16,070	18,945	21,655	24,360	
	7"	Moment of Inertia (in 4)					462	500	831	977	1,601	2,389	3,402	
		Weight (nlf)	-				20.2	20.8	24.6	26.0	30.6	35.0	39.4	

Allowable Design Properties⁽¹⁾ (100% Load Duration)

(1) For product in beam orientation, unless otherwise noted.

Some sizes may not be available in your region.

USE: (1) 2 x 12 DFL (#1) WOOD MEMBER

SOLUTION:

SHEAR O.K.

DOUBLE SHEAR BOLTED CONNECTION DESIGN

 $\begin{array}{l} {\sf GROUP\ ADJUSTMENT\ FACTOR\ (Cg)} \\ {\sf Cg} = [m(1-m^2n)/n[1+Rea*m^n)(1+m)-1+m^2n]]^*[1+Rea/1-m] \\ {\sf Rea} = {\sf Lesser\ of\ EsAs/EmAm\ or\ EmAm/EsAs} \\ {\sf m} = {\sf u}\text{-}{\sf sqrt}(u^2-1) \quad {\sf u} = 1+y*s/2[1/EmAm\ +\ 1/EsAs] \\ {\sf y} = 180000^*D^{-1.5}\ for\ wood/wood\ connection \\ {\sf y} = 270000^*D^{-1.5}\ for\ wood/metal\ connection \\ \end{array}$

DATA ENTRY				CALCULA	TED VALUES
BOLT DIA D (IN.)	7/8			EmAm =	139650000
WOOD TO WOOD	Υ			EsAs =	27000000
WOOD TO METAL	Ν			y =	147327.76
SPACING - s (IN.)	3			u =	1.0097673
MODULUS (Em)	1.9E+06			m =	0.8696599
MODULUS (Es)	1.6E+06			Rea =	0.1933405
MAIN DIMS. (tmXd)	5.25	Х	14		
SIDE DIMS. (tsXd)	1.5	Х	11.25	Cg =	1
NO. OF FASTENERS/ROW	1				
WOOD SPECIFIC GRAVITY	0.55				

BOLT DESIGN VALUE (Z) DOUBLE SHEAR

Z = LESSER OF Eq. 8.3-1, 8.3-2, 8.3-3 & 8.3-48.3-1 Z = D*tm*Fem/(4*Ka)8.3-2 Z=D*ts*Fes/(2*Ka)8.3-3 Z = k3*D*ts*Fem/(1.6*(2+Re)*Ka)8.3-4 $Z = (D^2/1.6*Ka)*(SQRT((2*Fem*Fyb)/(3*(1+Re))))$ Ka = 1+(a/360) k3 = -1 + SQRT((2*(1+Re)/Re+((2*Fyb*(2+Re)*D^2)/(3*Fem*ts^2)))) Re = Fem/Fes Fea = Fe||*Fe_/(Fe||*sin^2a+Fe_*cos^2a)

DATA ENTRY		CALCULATED VALUES	
DOWEL BRG. PAR Fe (PSI)	6160	Ka = 1.13	
DOWEL BRG. PERP Fe_ (PSI)	2741	Re = 0.58	
MAIN DOWEL BRG Fem (PSI)	3236	k3 = 2.74	
SIDE DOWEL BRG Fes (PSI)	5600	Fea = 3236.41	
ANGLE TO GRAIN - a (DEG.)	45	Z1 = 3303.83	
BOLT YIELD - Fyb (PSI)	47000	Z2 = 3266.67	
WET SERVICE (Y OR N)	n	Z3 = 2504.05 C	C^=
DESIGN LOAD - P (LBS) =	6580	Z4 = 4315.58 0	Cm =
		Z = 2504.05 Z	Zallo
NO. OF FASTENERS REQ'D =	2	Zallow = 4006.48	١SS

		NDS Bolt	Spacing Re	quirement	s			
DIA (in)	Edge	(in)	End	(in)	Bolt Sp	acing (in)	Row Spa	acing (in)
	perp	par	perp	par	perp	par	perp	par
0.38	1.50	0.56	1.50	1.50	1.50	1.50	0.94	0.84
0.50	2.00	0.75	2.00	2.00	2.00	2.00	1.25	1.13
0.63	2.50	0.94	2.50	2.50	2.50	2.50	1.56	1.41
0.75	3.00	1.13	3.00	3.00	3.00	3.00	1.88	1.69
0.88	3.50	1.31	3.50	3.50	3.50	3.50	2.19	1.97
1.00	4.00	1.50	4.00	4.00	4.00	4.00	2.50	2.25
1.13	4.50	1.69	4.50	4.50	4.50	4.50	2.81	2.53
1.25	5.00	1.88	5.00	5.00	5.00	5.00	3.13	2.81

C^= 1 Cm = 1.00 Zallow = Z*Cg*Cm*Cd ASSUME Cd = 1

Garage, B1 2ND STORY PLUS ROOF 3 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7436 @ 3 1/2"	7436 (1.89")	Passed (100%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	6351 @ 1' 5 1/2"	13965	Passed (45%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	29742 @ 8' 3 1/2"	36387	Passed (82%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.449 @ 8' 3 1/2"	0.533	Passed (L/428)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.617 @ 8' 3 1/2"	0.800	Passed (L/311)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 8' 9" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 16' o/c based on loads applied, unless detailed otherwise.

	В	earing Leng	th	Loads t	o Supports ((lbs)	
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 14" PSL beam	3.50"	Hanger ¹	1.89"	2095	5605	7700	See note 1
2 - Hanger on 14" PSL beam	3.50"	Hanger ¹	1.89"	2095	5605	7700	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	
2 - Face Mount Hanger	HGUS5.50/10	4.00"	N/A	46-10d	16-10d	

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	3 1/2" to 16' 3 1/2"	N/A	21.5		
1 - Uniform (PLF)	0 to 16' 7" (Top)	N/A	232.0	676.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by VMM

ForteWEB Software Operator	
/ince Matarrese	
/M Engineering LTD	
262) 364-8744	
/ince@VMnroeng.com	

Job Notes Commercial Alteration and Addition

Garage, B2 2 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5366 @ 3 1/2"	5366 (2.04")	Passed (100%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4584 @ 1' 5 1/2"	9310	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	21465 @ 8' 3 1/2"	24258	Passed (88%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.503 @ 8' 3 1/2"	0.533	Passed (L/382)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.668 @ 8' 3 1/2"	0.800	Passed (L/287)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 5' 5" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 16' o/c based on loads applied, unless detailed otherwise.

	Bearing Length			Loads 1	o Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 14" SPF beam	3.50"	Hanger ¹	2.04"	1371	4187	5558	See note 1
2 - Hanger on 14" SPF beam	3.50"	Hanger ¹	2.04"	1371	4187	5558	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories				
1 - Face Mount Hanger	HGUS410	4.00"	N/A	46-10d	16-10d					
2 - Face Mount Hanger	HGUS410	4.00"	N/A	46-10d	16-10d					

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	3 1/2" to 16' 3 1/2"	N/A	14.3		
1 - Uniform (PSF)	0 to 16' 7" (Front)	12' 7 1/2"	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by VMM

ForteWEB Software Opera	tor
Vince Matarrese	
VM Engineering LTD	
(262) 364-8744	
Vince@VMproena.com	

Job Notes Commercial Alteration and Addition

Garage, C1 1 piece(s) 7" x 7" 1.8E Parallam® PSL

Post Height: 10'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	17	50	Passed (34%)		
Compression (lbs)	17435	94140	Passed (19%)	1.00	1.0 D + 1.0 L
Base Bearing (lbs)	17435	1587600	Passed (1%)		1.0 D + 1.0 L
Bending/Compression	0.13	1	Passed (13%)	1.00	1.0 D + 1.0 L

• Input axial load eccentricity for this design is 10% of applicable member side dimension.

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate		Steel	
Max Unbraced Length			Comments	
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Floor Live	
Vertical Load	(0.90)	(1.00)	Comments
1 - Point (Ib)	6135	11300	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by VMM

ForteWEB Software Operator Vince Matarrese VM Engineering LTD (262) 364-8744 Vince@VMproeng.com Job Notes

Commercial Alteration and Addition

4/10/2020 12:00:34 PM UTC ForteWEB v2.4, Engine: V8.0.1.5, Data: V7.3.2.0 File Name: 425 E Broadway Page 1 / 1

Garage, B1 2 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2921 @ 3 1/2"	3938 (1.50")	Passed (74%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2578 @ 1' 2 3/4"	7481	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	11683 @ 8' 3 1/2"	16137	Passed (72%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.508 @ 8' 3 1/2"	0.533	Passed (L/378)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.682 @ 8' 3 1/2"	0.800	Passed (L/281)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 10' 10" o/c based on loads applied, unless detailed otherwise.

Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 16' o/c based on loads applied, unless detailed otherwise.

	Bearing Length			Loads 1	o Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 11 1/4" PSL beam	3.50"	Hanger ¹	1.50"	768	2255	3023	See note 1
2 - Hanger on 11 1/4" PSL beam	3.50"	Hanger ¹	1.50"	768	2255	3023	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories				
1 - Face Mount Hanger	HUC412	2.50"	N/A	22-16d	10-10d					
2 - Face Mount Hanger	HHUS48	3.00"	N/A	22-10d	8-10d					

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	3 1/2" to 16' 3 1/2"	N/A	11.5		
1 - Uniform (PSF)	0 to 16' 7" (Front)	6' 9 5/8"	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by VMM

ForteWEB Software Ope	erator
Vince Matarrese	
VM Engineering LTD	
(262) 364-8744	
Vince@VMproena.com	

Job Notes Commercial Alteration and Addition

Garage, new joists 1 piece(s) 2 x 10 Spruce-Pine-Fir No. 1 / No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	438 @ 3 1/2"	956 (1.50")	Passed (46%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	384 @ 1' 3/4"	1249	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1381 @ 6' 7 1/4"	1973	Passed (70%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.220 @ 6' 7 1/4"	0.421	Passed (L/688)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.286 @ 6' 7 1/4"	0.631	Passed (L/529)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Top Edge Bracing (Lu): Top compression edge must be braced at 7' 5" o/c based on loads applied, unless detailed otherwise.

• Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 12' 8" o/c based on loads applied, unless detailed otherwise.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

• No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads t	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Hanger on 9 1/4" SPF beam	3.50"	Hanger ¹	1.50"	106	352	458	See note 1
2 - Hanger on SPF studWall	3.50"	Hanger ¹	1.50"	106	352	458	See note 1

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Top Mount Hanger	THA213	1.75"	4-10d	2-10d	4-10dx1.5				
2 - Top Mount Hanger	BA1.62X H=9.125	3.00"	6-10d	8-10d	2-10dx1.5				

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 13' 2 1/2"	16"	12.0	40.0	Floor loading

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by VMM

ForteWEB Software Operator Job Notes Vince Matarrese Commercia VM Engineering LTD (262) 364-8744 Vince@VMproeng.com

Commercial Alteration and Addition

4/10/2020 11:41:19 AM UTC ForteWEB v2.4, Engine: V8.0.1.5, Data: V7.3.2.0 File Name: 425 E Broadway Page 1 / 1

Design Detail

Cheek	Summary			
Ratio	Check	Provided	Required	Combination
Footir	ig			
✓ 0.283	X Flexure (-Z)	131.7 in∙k	37.29 in k	1.2D + 1.6L
✓ 0.283	X Flexure (+Z)	131.7 in∙k	37.29 in∙k	1.2D + 1.6L
✓ 0.252	Z Flexure (-X)	147.9 in∙k	37.29 in∙k	1.2D + 1.6L
√ 0.252	Z Flexure (+X)	147.9 in∙k	37.29 in∙k	1.2D + 1.6L
√ 0.323	Shear (-Z)	13.27 k	4.29 k	1.2D + 1.6L
√ 0.323	Shear (+Z)	13.27 k	4.29 k	1.2D + 1.6L
√ 0.264	Shear (-X)	14.83 k	3.92 k	1.2D + 1.6L
√ 0.264	Shear (+X)	14.83 k	3.92 k	1.2D + 1.6L
🗸 0.912	Min Steel Z	0.6 in ²	0.55 in ²	1.4D
✓ 0.912	Min Steel X	0.6 in ²	0.55 in ²	1.4D
√ 0.153	Min Strain Z	0.0262	0.0040	1.4D
✓ 0.135	Min Strain X	0.0296	0.0040	1.4D
✓ 0.259	Punching Shear	164.3 psi	42.48 psi	1.2D + 1.6L
Pedes	stal			
√ 0.054	Axial	503.7 k	27.14 k	1.2D + 1.6L
√ 0.000	Biaxial Bending	0.000	1.000	1.4D
✓ 0.000	Shear X	47.11 k	0 k	1.4D
✓ 0.000	Shear Z	47.11 k	0 k	1.4D
Interfa	ace			
✓ 0.023	Bearing (footing)	1171 k	27.14 k	1.2D + 1.6L
✓ 0.043	Bearing (pedestal)	633.8 k	27.14 k	1.2D + 1.6L
v 0.000	Tension	133.9 k	0 k	1.4D
✓ 0.000	Dowel Dev (ftg)	5 in	0 in	1.4D
v 0.000	Dowel Dev (ped)	46.5 in	0 in	1.4D
✓ 0.653	Min Steel	2.48 in ²	1.62 in ²	1.4D
Stabil	ity			
✓ 0.990	Bearing Pressure	2000 psf	1980 psf	1.0D + 1.0L
v 0.000	Overturning-X	Infinite	1.500	1.0D + 1.0L
v 0.000	Overturning-Z	Infinite	1.500	1.0D + 1.0L
0.000	Sliding-X	Infinite	1.500	1.0D + 1.0L
0.000	Sliding-Z	Infinite	1.500	1.0D + 1.0L
0.000	Uplift	Infinite	1.500	1.0D + 1.0L
•	- 1			

Dowels: 8 - #

— Criteria

- Loads Summary (Service Loads)

Load Set	Name	Source	Р	Mx	Mz	Vx	Vz	Overburden
Edge	Edge	Dead	6.2 k	0 in∙k	0 in∙k	0 k	0 k	0 psf
Edge	Edge	Live	11.3 k	0 in∙k	0 in∙k	0 k	0 k	0 psf

Strength Check Results Summary

Load Combination	Factored	Factored	Factored	Factored	Factored	Factored	Factored	Factored	Mu
	Axial	Moment-X	Moment-Z	Shear-X	Shear-Z	Overburden	Footing Weight	Pedestal Weight	+X Cantilever
	(k)	(in∙k)	(in∙k)	(k)	(k)	(psf)	(k)	(k)	(in∙k)
Set: Edge : 1.4D	8.68	0	Ó	0	0	Ó	1.4	1.89	15.76
Set: Edge : 1.2D + 1.6L	25.52	0	0	0	0	0	1.2	1.62	37.29
Set: Edge : 1.2D + 0.5L	13.09	0	0	0	0	0	1.2	1.62	20.94
Set: Edge : 1.2D	7.44	0	0	0	0	0	1.2	1.62	13.5
Set: Edge : 0.9D	5.58	0	0	0	0	0	0.9	1.22	10.13
							_		

QuickFooting 5.0 (iesweb.com)

Г

Strength Check Results	Summary	/ (continu	ued)						
Load Combination	Mu	Mu	Mu	Vu	Vu	Vu	Vı	J Vu	vu
	-X Cantilever	+Z Cantilever	-Z Cantilever	+X Cantilever	-X Cantilever	+Z Cantilever	-Z Cantileve	r Punching	Punching
	(in∙k)	(in∙k)	(in∙k)	(k)	(k)	(k)	(k) (k)	(psi)
Set: Edge : 1.4D	15.76	15.76	15.76	1.65	1.65	1.81	1.81	6.37	15.73
Set: Edge : 1.2D + 1.6L	37.29	37.29	37.29	3.92	3.92	4.29	4.29	9 17.2	42.48
Set: Edge : 1.2D + 0.5L	20.94	20.94	20.94	2.2	2.2	2.41	2.41	9.13	22.55
Set: Edge : 1.2D	13.5	13.5	13.5	1.42	1.42	1.55	1.55	5 5.46	13.49
Set: Edge : 0.9D	10.13	10.13	10.13	1.06	1.06	1.16	1.16	6 4.1	10.11
Load Combination		Pu	Mu-X	Mu-Z	Vu-X	_	Vu-Z	Reqd dowel	Reqd dowel
	Pedes	tal	Pedestal	Pedestal	Pedestal	Pe	edestal	dev (footing)	dev (pedestal)
		(k)	(in∙k)	(in∙k)	(k)		(k)	(in)	(in)
Set: Edge : 1.4D	8.	68	0	0	0		0	13.69	13.69
Set: Edge : 1.2D + 1.6L	25.	52	0	0	0		0	13.69	13.69
Set: Edge : 1.2D + 0.5L	13.	09	0	0	0		0	13.69	13.69
Set: Edge : 1.2D	1.	44 59	0	0	0		0	13.69	13.69
	o .	00	0	0	0		0	13.09	13.09
Stability Check Results 3	Summary								
Load Combination	Factored	Factored	Max Applied						
	Axial	Moment-X	Moment-Z	Shear-X	Shear-Z	Overburden	Footing Weight	t Pedestal Weight	Bearing
	(k)	(in·k)	(in·k)	(k)	(k)	(psf)	(k) (k)	(psf)
Set: Edge : 1.0D + 1.0L	17.5	Ó	Ó	Ó	Ó	0	1	1.35	1980
Set: Edge : 1.0D	6.2	0	0	0	0	0	1	1.35	852.9
Set: Edge : 1.0D + 0.75L	14.68	0	0	0	0	0	1	1.35	1698
Set: Edge : 0.6D	3.72	0	0	0	0	0	0.6	6 0.81	511.7
Load Combination	Allowable	Actual F.S.	Actual F.S.	Required F.S.	Actual F.S.	Actual F.S.	Required F.S	. Actual F.S.	Required F.S.
	Bearing	Overturning-X	Overturning-Z	Overturning	Sliding-X	Sliding-Z	Sliding	g Uplift	Uplift
	(psf)								
Set: Edge : 1.0D + 1.0L	2000	1.#IO	1.#IO	1.500	1.#IO	1.#IO	1.500) 1.#IO	1.500
Set: Edge : 1.0D	2000	1.#IO	1.#IO	1.500	1.#IO	1.#IO	1.500) 1.#IO	1.500
Set: Edge : 1.0D + 0.75L	2000	1.#IO	1.#IO	1.500	1.#IO	1.#IO	1.500) 1.#IO	1.500
Set: Edge : 0.6D	2000	1.#IO	1.#IO	1.500	1.#IO	1.#IO	1.500) 1.#IO	1.500

Capacity Calcs

---- Footing X-Direction Capacity

General Section Calcs (ACI 318-14 13.3.3.1», 7.5.2.1», 22.3», 22.2)

 $\begin{array}{l} a=\frac{A_{s}\,f_{V}}{0.85\,F'_{c}\,b_{W}} &=& \frac{(0.6\,in^{2})\,(60000\,psi)}{0.85\,(3000\,psi)\,(38\,in)} &=& 0.37\,in\\ \beta_{1} &=& 0.850 \qquad (F'_{c}\leq 4000\,psi)\\ x=a\,/\,\beta_{1} &=& (0.37\,in)\,/\,(0.850) &=& 0.44\,in \end{array}$

Capacity Calcs (ACI 318-14 13.3.3.1», 7.5.2.1», 7.5.3.1», 22.3», 22.2, 7.6.1.1, 22.5.5.1, 19.2.4, 21.2)

$$\begin{split} \lambda &= 1.0 & (normal weight concrete) \\ \phi M_n &= \phi A_s \ f_y \left(d - a \, / \, 2 \right) &= (0.90) \left(0.6 \ in^2 \right) \left(60000 \ psi \right) \left[(4.75 \ in) - (0.37 \ in) \, / \, 2 \right] &= 147.9 \ in \cdot k \\ \phi V_c &= \phi \, 2 \, \lambda \, \sqrt{F'_c} \ b_w \ d &= (0.750) \, 2 \, (1.0) \, \sqrt{3000 \ psi} \ (38 \ in) \left(4.75 \ in \right) &= 14.83 \ k \\ A_{smin} &= \frac{0.0018 \, (60000)}{f_y} A_g \ = \ \frac{0.0018 \, (60000)}{(60000 \ psi)} \left(2.11 \ ft^2 \right) \ = \ 0.55 \ in^2 \end{split}$$

$$_{\epsilon t} = 0.003 \left(\frac{d}{a \, / \, \beta_1} - 1 \right) = 0.003 \left[\frac{(4.75 \text{ in})}{(0.37 \text{ in}) \, / \, (0.850)} - 1 \right] = 0.0296$$

Development (ACI 318-14 13.2.8.1», 25.4.2)

 ψ_t = 1.0 (12 inches or less cast below - 3.00 inches)

 $\begin{array}{ll} \psi_{e} = 1.0 & (\text{bar not epoxy coated}) \\ \psi_{s} = 0.80 & (\text{bars are #6 or smaller}) \\ \lambda = 1.0 & (\text{normal weight concrete}) \\ s/2 = (10.5 \text{ in})/2 = 5.25 \text{ in} \\ \text{cover } + d_{b}/2 = (3 \text{ in}) + (0.5 \text{ in})/2 = 3.25 \text{ in} \\ \text{cb} = 3.25 \text{ in} & (\text{lesser of half spacing, ctr to surface}) \\ K_{tr} = 0.0 & (\text{no transverse reinforcement}) \\ \frac{c_{b} + K_{tr}}{d_{b}} = \frac{(3.25 \text{ in}) + (0.0)}{(0.5 \text{ in})} = 6.50 \\ I_{d} = \left(\frac{3.}{40} \frac{f_{y}}{\lambda \sqrt{F'_{c}}} \frac{\psi_{t} \psi_{e} \psi_{s}}{2.5}\right) d_{b} = \left[\frac{3.}{40} \frac{(60000 \text{ psi})}{(1.0) \sqrt{3000 \text{ psi}}} \frac{(1.0) (1.0) (0.80)}{2.5}\right] (0.5 \text{ in}) = 13.15 \text{ in} \end{array}$

Footing Z-Direction Capacity -

General Section Calcs (ACI 318-14 13.3.3.1», 7.5.2.1», 22.3», 22.2)

 $\begin{array}{ll} a = \frac{A_{s} \; f_{y}}{0.85 \; F_{c}' \, b_{w}} &= \frac{(0.6 \; in^{2}) \left(60000 \; psi \right)}{0.85 \left(3000 \; psi \right) \left(38 \; in \right)} \; = \; 0.37 \; in \\ \beta_{1} \; = \; 0.850 \qquad (F_{c}' \leq 4000 \; psi) \\ x = a \; / \; \beta_{1} \; = \; \left(0.37 \; in \right) / \left(0.850 \right) \; = \; 0.44 \; in \end{array}$

Capacity Calcs (ACI 318-14 13.3.3.1», 7.5.2.1», 7.5.3.1», 22.3», 22.2, 7.6.1.1, 22.5.5.1, 19.2.4, 21.2)

$$\begin{split} \lambda &= 1.0 \qquad (\text{normal weight concrete}) \\ \phi M_n &= \phi \, A_s \, f_y \, (d - a \, / \, 2) \ &= \ (0.90) \, (0.6 \, \text{in}^2) \, (60000 \, \text{psi}) \, [(4.25 \, \text{in}) - (0.37 \, \text{in}) \, / \, 2] \ &= \ 131.7 \, \text{in} \cdot \text{k} \\ \phi V_c &= \phi \, 2 \, \lambda \, \sqrt{F'_c} \, b_w \, d \ &= \ (0.750) \, 2 \, (1.0) \, \sqrt{3000 \, \text{psi}} \, (38 \, \text{in}) \, (4.25 \, \text{in}) \ &= \ 13.27 \, \text{k} \\ A_{smin} &= \frac{0.0018 \, (60000)}{f_y} \, A_g \ &= \ \frac{0.0018 \, (60000)}{(60000 \, \text{psi})} \, (2.11 \, \text{ft}^2) \ &= \ 0.55 \, \text{in}^2 \end{split}$$

$$_{\epsilon_{t}} = 0.003 \left(\frac{d}{a / \beta_{1}} - 1 \right) = 0.003 \left[\frac{(4.25 \text{ in})}{(0.37 \text{ in}) / (0.850)} - 1 \right] = 0.0262$$

Development (ACI 318-14 13.2.8.1», 25.4.2)

 ψ_t = 1.0 (12 inches or less cast below - 3.00 inches)

-3.17 ft-----

-

$$\begin{array}{ll} \psi_{e} = 1.0 & (\text{bar not epoxy coated}) \\ \psi_{s} = 0.80 & (\text{bars are #6 or smaller}) \\ \lambda = 1.0 & (\text{normal weight concrete}) \\ \text{s} / 2 = (10.5 \text{ in}) / 2 = 5.25 \text{ in} \\ \text{cover} + d_{b} / 2 = (3 \text{ in}) + (0.5 \text{ in}) / 2 = 3.25 \text{ in} \\ \text{c}_{b} = 3.25 \text{ in} & (\text{lesser of half spacing, ctr to surface}) \\ \text{K}_{tr} = 0.0 & (\text{no transverse reinforcement}) \\ \frac{c_{b} + K_{tr}}{d_{b}} = \frac{(3.25 \text{ in}) + (0.0)}{(0.5 \text{ in})} = 6.50 \\ \text{I}_{d} = \left(\frac{3.}{40} \frac{f_{y}}{\sqrt{F_{c}}} \frac{\psi_{t} \psi_{e} \psi_{s}}{2.5}\right) d_{b} = \\ \left[\frac{3.}{40} \frac{(60000 \text{ psi})}{(1.0) \sqrt{3000 \text{ psi}}} \frac{(1.0) (1.0) (0.80)}{2.5}\right] (0.5 \text{ in}) = 13.15 \text{ in} \end{array}$$

QuickFooting 5.0 (iesweb.com)

