

STORM WATER CALCULATIONS FOR: Montessori School Phase 1 Addition CITY OF WAUKESHA, WI Excel Job #: 2053880

BASED ON SCS TR-55 METHOD and MANNINGS EQUATION, AND SLAMM February 19, 2021

Prepared By: Eric Drazkowski, P.E. Excel Engineering Inc. 100 Camelot Drive Fond du Lac, WI 54935 920-926-9800

Always a Better Plan

Table of Contents

Overview Soil Information Drainage Calculations Water Quantity Water Quality Site Runoff Summary Infiltration Storm Sewer Pipe Design & 100 year conveyance Erosion and Sediment Control Appendix A: Post-Development Area(s) Appendix B: Soil Maps Appendix C: Pipe Capacity Calculations Appendix D: SCS TR55 Stormwater Management Calculations

OVERVIEW:

The proposed project is located on the northeast corner of University Avenue and Summit Avenue within the City of Waukesha, WI. This development involves the placement of a 8,585 sf school addition with parking lot reconfiguration. The addition is being constructed as Phase 1 of the overall development plan originally approved in 2019. The stormwater plan has accounted for the original future development shown on the original plans and is designed to connect into the master plans stormwater system in the future. The current design is developed to handle the current flows from the site. The project disturbs less than 1 acre.

The existing site generally drains from north to south into Summit Avenue's storm system. The post developed site will be routed with 100yr storm pipe to drain to the existing discharge point on the site. Stormwater runoff will be routed around the building. Overland discharge routes have been provided to allow emergency overflow around the building until the master plan can be developed. See the attached proposed stormwater calculations in Appendix D. All storm pipes have been sized per the original master plan calculations. The calculations included show the pipe sizing still is sufficient.

SOIL INFORMATION:

Existing Soils data: Soil Type: BsA: Brookston silt loam, 0-2% slopes, Hydro. Soil Rating C/D. HmB: Hochheim loam, 2-6% slopes, Hydro Soil Rating D. HmC2: Hochheim loam, 6-12% slopes, Hydro Soil Rating D.

Soil classifications for the proposed property were taken off of the USDA Web Soil Survey. Please see attached hydrologic soil group map showing the soils within the drainage areas in Appendix B.

DRAINAGE CALCULATIONS:

Rainfall depths used for the runoff calculations were referenced from The City of Waukesha Stormwater Ordinance Chapter 32.11(a)2. Calculations use Type II distribution.

1-year: 2.3 inches 2-year: 2.7 inches 10-year: 4.0 inches 100-year: 5.6 inches

Curve Numbers: Impervious -Lawn (B) -Lawn (C) -Lawn (D) -Woods (C) -Woods (D) -

Always a Better Plan

WATER QUANTITY

<u>City of Waukesha Requirements</u> – N/A, less than 30,000sf of impervious is added.

Wisconsin Department of Natural Resources – N/A, less than 1 acre disturbed.

WATER QUALITY

<u>City of Waukesha & Wisconsin DNR Requirements</u> – N/A less than 1 acre disturbed.

INFILTRATION:

<u>City of Waukesha, Wisconsin and DNR Requirements (Redevelopment)</u> – N/A, less than 1 acre is disturbed.

STORM SEWER PIPE DESIGN & 100-YEAR CONVEYANCE:

All storm pipes bringing water to the proposed pond were sized to convey the 100-year storm. See Appendix A, C and D for calculations and basin map. The calculated 100-year storm event will be routed around the proposed addition and discharge to the south as it currently does. Emergency overflows routes are provided on the north side of the site to convey runoff to the east and west of the building and ultimately south overland to the existing storm system.

EROSION AND SEDIMENT CONTROL:

The following are practices that will be used to control sediment during construction: Silt Fence – Silt fence will be placed around the perimeter of the site for perimeter control as well as downhill of any disturbed areas where sheet flow will exist.

Tracking Pads – Stone tracking pads will be placed at all construction entrances to the site to ensure dirt and soil tracked onto public roads is limited.

Ditch Checks – Ditch checks will be provided to reduce the velocity of water flowing in ditch bottoms.

Erosion Matting – Erosion matting will be placed on any steep slopes as well as ditch bottoms to ensure that these areas are permanently stabilized over time.

The erosion control locations, specifications, construction sequence, site stabilization notes, and seeding notes can be seen on civil sheets C1.0 and C1.3.

Appendix A <u>Post-Development Area(s):</u>

SUBBASIN A1 9,811 SF (0.22 AC) IMP-6,729 SF (0.15 AC) PERV-3,082 SF (0.07 ÁC) SUBBASIN A2 29,052 SF (0.67 AC) IMP-5,495 SF (0.13 AC) PERV-23,557 SF (0.54AC) SUBBASIN B1 16,904 (0.39 AC) IMP-910 SF (0.02 AC) PERV-15,994 (0.37) SUBBASIN B2 9,051 SF (0.21 AC) IMP-531 SF (0.01 AC) PERV-8520 SF (0.20 AC) SUBBASIN C 4,150 SF (0.10 AC) IMP-4,150 SF (0.10 AC)

SUBBASIN A1

Appendix B Soil Maps

Always a Better Plan

Hydrologic Soil Group-Milwaukee and Waukesha Counties, Wisconsin 15' 57" W 88° 16' 10'' W ŝ 396600 396640 396680 396720 396760 396800 396840 | 067490 43° 1' 27" N 43° 1' 27" N 4764290 4764250 4764250 4764210 KIA 4764210 4764170 4764170 NUniversity Dr HmB Լաթ 4764130 4764130 HmC2 4764090 4764090 4764050 4764050 **Bs**A 4764010 4764010 18 4763970 4763970 18 4763930 4763930 Soil Map may not be valid at this scale. 43° 1' 15" N 43° 1' 15" N Т 396560 396600 396640 396680 . 396720 . 396760 396800 . 396840 88° 16'10" W 88° 15'57" W Map Scale: 1:1,830 if printed on A portrait (8.5" x 11") sheet. __Meters 150 Ν 25 50 100 Feet 0 50 100 200 300 Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 16N WGS84

Natural Resources Conservation Service

Hydrologic Soil Group

Map unit symbol Map unit name		Rating	Acres in AOI	Percent of AOI
BsA	Brookston silt loam, 0 to 2 percent slopes	C/D	5.9	41.0%
HmB	Hochheim loam, 2 to 6 percent slopes	D	2.7	18.8%
HmC2	Hochheim loam, 6 to 12 percent slopes, eroded	D	3.8	26.6%
KIA	Kendall silt loam, 1 to 3 percent slopes	С	0.6	4.4%
LmB	Lamartine silt loam, 0 to 3 percent slopes	B/D	1.3	9.2%
Totals for Area of Intere	st		14.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Appendix C Pipe Capacity Calculations

Always a Better Plan

Montessori School Addition Phase 1 - Waukesha Project Name

2053880

Excel Engineering Project No.

ĺ					:		
Р	ipe Data				Pipe Capacity	r (100-yr)	
Diameter (FT) Slope (FT/FT)	Manning's n	Basin No.	Total Flow (cfs)	Total Flow (gpm)	Full Flow Capacity (cfs)	Full Flow Capacity (gpm)
0.83	0.005	0.012	A1	1.30	583	1.67	747
1.25	0.005	0.012	A1, A2	3.62	1625	4.96	2227
1.5	0.005	0.012	A1,A2,B1	4.72	2118	8.07	3621
1	0.005	0.012	A1,A2,B1,B2	5.28	2370	2.74	1228
10YR = 2.76 Cl Full Flow Cap	-S acity based off I	Manning's Equa	tion $Q = \frac{1.49}{n}$	R ^{2/3} S ^{1/2} a			
					Typical Manning's		
Where:	Q = Full Flow C	Capacity of Pipe	(cfs)		HDPE	0.012	
	n = manning's	roughness coef	ficient		PVC	0.012	
	R = hydraulic r	adius (ft) (D/4)			Concrete	0.013	
	s = hydraulic g	radient, slope (i	ft/ft)		CMP	0.024	

*Total Flow calculated via TR-55 hydrologic calculations. Reference Storm Pipe Basin Map & TR-55 Calculations

a = flow area (sq. ft.)

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Overflow Weir (NW Corner) 100yr Flow = 5.28cfs

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.50
Side Slopes (z:1)	= 3.00, 4.00	Q (cfs)	= 7.860
Total Depth (ft)	= 0.50	Area (sqft)	= 1.88
Invert Elev (ft)	= 152.60	Velocity (ft/s)	= 4.19
Slope (%)	= 1.00	Wetted Perim (ft)	= 5.64
N-Value	= 0.017	Crit Depth, Yc (ft)	= 0.50
		Top Width (ft)	= 5.50
Calculations		EGL (ft)	= 0.77
Compute by:	Q vs Depth		
No. Increments	= 10		

Reach (ft)

Appendix D <u>SCS TR55</u> <u>Stormwater Management</u> <u>Calculations:</u>

- o Hydrograph Return Period Recap
- o Hydrograph Summary Reports
- o Hydrograph Plots
- Hydrograph Tc Worksheets

6

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd.	Hydrograph	Inflow	Peak Outflow (cfs)								Hydrograph Description		
NO.	type (origin)	nya(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description		
2	SCS Runoff		0.358	0.467			0.836			1.298	SUBBASIN A1		
3	SCS Runoff		0.235	0.426			1.186			2.318	SUBBASIN A2		
4	SCS Runoff		0.046	0.128			0.508			1.097	SUBBASIN B1		
5	SCS Runoff		0.025	0.069			0.273			0.591	SUBBASIN B2		
6	SCS Runoff		0.280	0.330			0.494			0.694	SUBBASIN C		
8	Combine	2, 3, 4, 5,	0.655	1.076			2.763			5.280	Overflow Discharge		

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
2	SCS Runoff	0.467	3	717	1,055				SUBBASIN A1
3	SCS Runoff	0.426	3	720	1,091				SUBBASIN A2
4	SCS Runoff	0.128	3	720	417				SUBBASIN B1
5	SCS Runoff	0.069	3	720	225				SUBBASIN B2
6	SCS Runoff	0.330	3	717	840				SUBBASIN C
8	Combine	1.076	3	720	2,788	2, 3, 4, 5,			Overflow Discharge
205	53880STORM	(2-18-21)	.gpw		Return P	eriod: 2 Ye	ar	Thursday, 0	02 / 18 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 2

SUBBASIN A1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.467 cfs
Storm frequency	= 2 yrs	Time to peak	= 717 min
Time interval	= 3 min	Hyd. volume	= 1,055 cuft
Drainage area	= 0.220 ac	Curve number	= 86*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.150 x 98) + (0.070 x 61)] / 0.220

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 3

SUBBASIN A2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.426 cfs
Storm frequency	= 2 yrs	Time to peak	= 720 min
Time interval	= 3 min	Hyd. volume	= 1,091 cuft
Drainage area	= 0.670 ac	Curve number	= 68*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.130 x 98) + (0.540 x 61)] / 0.670

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 4

SUBBASIN B1

Hydrograph type =	SCS Runoff	Peak discharge	= 0.128 cfs
Storm frequency =	= 2 yrs	Time to peak	= 720 min
Time interval =	= 3 min	Hyd. volume	= 417 cuft
Drainage area =	= 0.390 ac	Curve number	= 63*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= User	Time of conc. (Tc)	= 6.00 min
Total precip. =	= 2.70 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (0.370 x 61)] / 0.390

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 5

SUBBASIN B2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.069 cfs
Storm frequency	= 2 yrs	Time to peak	= 720 min
Time interval	= 3 min	Hyd. volume	= 225 cuft
Drainage area	= 0.210 ac	Curve number	= 63*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.010 x 98) + (0.200 x 61)] / 0.210

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 6

SUBBASIN C

Hydrograph type	= SCS Runoff	Peak discharge	= 0.330 cfs
Storm frequency	= 2 yrs	Time to peak	= 717 min
Time interval	= 3 min	Hyd. volume	= 840 cuft
Drainage area	= 0.100 ac	Curve number	= 98*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 2.70 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.100 x 98)] / 0.100

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Thursday, 02 / 18 / 2021

Hyd. No. 8

Overflow Discharge

Hydrograph type =	= Combine	Peak discharge	= 1.076 cfs
Storm frequency =	= 2 yrs	Time to peak	= 720 min
Time interval =	= 3 min	Hyd. volume	= 2,788 cuft
Inflow hyds.	= 2, 3, 4, 5	Contrib. drain. area	= 1.490 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
2	SCS Runoff	0.836	3	717	1,906				SUBBASIN A1
3	SCS Runoff	1.186	3	720	2,747				SUBBASIN A2
4	SCS Runoff	0.508	3	720	1,218				SUBBASIN B1
5	SCS Runoff	0.273	3	720	656				SUBBASIN B2
6	SCS Runoff	0.494	3	717	1,281				SUBBASIN C
8	Combine	2.763	3	720	6,528	2, 3, 4, 5,			Overflow Discharge
205	3880STORM	(2-18-21)	.gpw	<u> </u>	Return P	eriod: 10 Y	ear	Thursday, 0)2 / 18 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 2

SUBBASIN A1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.836 cfs
Storm frequency	= 10 yrs	Time to peak	= 717 min
Time interval	= 3 min	Hyd. volume	= 1,906 cuft
Drainage area	= 0.220 ac	Curve number	= 86*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 4.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.150 x 98) + (0.070 x 61)] / 0.220

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 3

SUBBASIN A2

Hydrograph type	= SCS Runoff	Peak discharge	= 1.186 cfs
Storm frequency	= 10 yrs	Time to peak	= 720 min
Time interval	= 3 min	Hyd. volume	= 2,747 cuft
Drainage area	= 0.670 ac	Curve number	= 68*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 4.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.130 x 98) + (0.540 x 61)] / 0.670

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 4

SUBBASIN B1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.508 cfs
Storm frequency	= 10 yrs	Time to peak	= 720 min
Time interval	= 3 min	Hyd. volume	= 1,218 cuft
Drainage area	= 0.390 ac	Curve number	= 63*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 4.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (0.370 x 61)] / 0.390

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 5

SUBBASIN B2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.273 cfs
Storm frequency	= 10 yrs	Time to peak	= 720 min
Time interval	= 3 min	Hyd. volume	= 656 cuft
Drainage area	= 0.210 ac	Curve number	= 63*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 4.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.010 x 98) + (0.200 x 61)] / 0.210

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 6

SUBBASIN C

Hydrograph type	= SCS Runoff	Peak discharge	= 0.494 cfs
Storm frequency	= 10 yrs	Time to peak	= 717 min
Time interval	= 3 min	Hyd. volume	= 1,281 cuft
Drainage area	= 0.100 ac	Curve number	= 98*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 4.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.100 x 98)] / 0.100

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Thursday, 02 / 18 / 2021

Hyd. No. 8

Overflow Discharge

Hydrograph type Storm frequency	= Combine = 10 yrs	Peak discharge Time to peak	= 2.763 cfs = 720 min
Time interval	= 3 min	Hyd. volume	= 6,528 cuft
Inflow hyds.	= 2, 3, 4, 5	Contrib. drain. area	= 1.490 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
2	SCS Runoff	1.298	3	717	3,018				SUBBASIN A1
3	SCS Runoff	2.318	3	717	5,285				SUBBASIN A2
4	SCS Runoff	1.097	3	720	2,524				SUBBASIN B1
5	SCS Runoff	0.591	3	720	1,359				SUBBASIN B2
6	SCS Runoff	0.694	3	717	1,825				SUBBASIN C
8	Combine	5.280	3	717	12,185	2, 3, 4, 5,			Overflow Discharge
205	3880STORM	(2-18-21)	.gpw	1	Return P	eriod: 100	Year	Thursday, 0	02 / 18 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 2

SUBBASIN A1

Hydrograph type	= SCS Runoff	Peak discharge	= 1.298 cfs
Storm frequency	= 100 yrs	Time to peak	= 717 min
Time interval	= 3 min	Hyd. volume	= 3,018 cuft
Drainage area	= 0.220 ac	Curve number	= 86*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.150 x 98) + (0.070 x 61)] / 0.220

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 3

SUBBASIN A2

Hydrograph type	= SCS Runoff	Peak discharge	= 2.318 cfs
Storm frequency	= 100 yrs	Time to peak	= 717 min
Time interval	= 3 min	Hyd. volume	= 5,285 cuft
Drainage area	= 0.670 ac	Curve number	= 68*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.130 x 98) + (0.540 x 61)] / 0.670

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 4

SUBBASIN B1

Hydrograph type	= SCS Runoff	Peak discharge	= 1.097 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 3 min	Hyd. volume	= 2,524 cuft
Drainage area	= 0.390 ac	Curve number	= 63*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.020 x 98) + (0.370 x 61)] / 0.390

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 5

SUBBASIN B2

Hydrograph type =	= SCS Runoff	Peak discharge	= 0.591 cfs
Storm frequency =	= 100 yrs	Time to peak	= 720 min
Time interval	= 3 min	Hyd. volume	= 1,359 cuft
Drainage area	= 0.210 ac	Curve number	= 63*
Basin Slope :	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.60 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.010 x 98) + (0.200 x 61)] / 0.210

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 6

SUBBASIN C

Hydrograph type	= SCS Runoff	Peak discharge	= 0.694 cfs
Storm frequency	= 100 yrs	Time to peak	= 717 min
Time interval	= 3 min	Hyd. volume	= 1,825 cuft
Drainage area	= 0.100 ac	Curve number	= 98*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.60 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.100 x 98)] / 0.100

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 8

Overflow Discharge

Hydrograph type Storm frequency	= Combine = 100 yrs	Peak discharge Time to peak	= 5.280 cfs = 717 min
Time interval	= 3 min	Hyd. volume	= 12,185 cuft
Inflow hyds.	= 2, 3, 4, 5	Contrib. drain. area	= 1.490 ac

