

collaborāte / formulāte / innovāte

MEMORANDUM

- **TO:** Josh Meyerhofer, Senior Project Engineer
- **FROM:** Patricia Chin, Site Development Civil Engineer
- **DATE:** June 23, 2025
- **SUBJECT:** Weldall MFG Expansion Storm Water Management Overview

The proposed project comprises of a 52,300-sf building expansion of a manufacturing facility located at 2001 S Prairie Ave. The site is subject to the City of Waukesha and WDNR regulations. An existing wet pond, constructed with a previous expansion, is sized to capture, treat, and detain the run-off from the developed site in accordance with the City Stormwater Ordinance, as established in the approved Storm Water Management Practice Maintenance Agreement (SWA 4654932), recorded on March 3, 2022 (**Attachment H**). The proposed redevelopment will result in an increase of 1,260-sf of impervious surface area and an ultimate decrease in paved surface area of 47,330-sf. No changes will be made to the drainage patterns of the site as a whole. No changes to the existing pond will be required to maintain compliance with the current City of Waukesha Municipal Code, Chapter 32.

Pre-development Conditions

SWA 4654932 references the September 2008 Stormwater Calculation Summary provided by Jahnke & Jahnke Associates, Inc (**Attachment I**), which establishes the pre-development conditions for the watershed. Utilizing the acreage, runoff curve number, and time of concentration listed in this report, GRAEF has analyzed the pre-development conditions per the current rainfall data set forth by the current Municipal Code (Chapter 32, Section 32.11.2, Table 3). The updated peak flows are described in **Table 1**, below. Hydrologic Calculations are included in **Attachment C**.

Table 1

Pre-Development Peak Runoff Rate Adjustment								
	Peak Runoff Rates (cfs), 2008 Jahnke & Jahnke	Peak Runoff Rates (cfs), City of Waukesha Municipal Code, Rev'd 05/06/2025						
1-yr/24hr Storm 1.64		2.05						
2-yr/24hr Storm	2.49	3.08						
10-yr/24hr Storm	6.50	7.85						
100-yr/24hr Storm	17.25	20.51						

Runoff Rate Reduction (City of Waukesha Controls)

Requirement: §32.10(D)(1) The calculated post-development peak storm water discharge rate shall not exceed the calculated pre-development discharge rates for the 1-year, 2-year, 10-year, and 100-year, 24-hour design storms. NR 151.123(2) provides an exemption from their peak discharge performance standard for redevelopment sites.

A site survey was completed May 30, 2025 (**Attachment A**), which shows that the outfall control structure (OCS) of the existing pond has been reconfigured from the original design to replace the 2" orifices with a 6" PVC intake orifice with a valve mechanism that opens during storm events. This information was used to analyze the function of the pond under the proposed redevelopment conditions. A summary of these findings can be found in **Table 2** below. This analysis shows that the existing pond will remain in compliance with the City's runoff rate reduction requirements following the buildout of the proposed building addition. Hydrologic Calculations of the proposed redevelopment conditions are included in **Attachment D**.

Table 2

Comparison of Peak Runoff Rates								
	Pre-Development Conditions (cfs)	Post-Development Conditions (cfs)						
1-yr/24hr Storm	2.05	1.54						
2-yr/24hr Storm	3.08	1.72						
10-yr/24hr Storm	7.85	6.42						
100-yr/24hr Storm	20.51	16.94						

Total Suspended Solids (City of Waukesha Controls)

Requirement: §32.10(D)(2) By design, each storm water management plan shall meet the following post-development total suspended solids reduction targets, based on average annual rainfalls, as compared to no runoff management controls: For new land development and in-fill development, 80% reduction in total suspended solids load; For redevelopment, 40% reduction of total suspended solids load from parking areas and roads. The City's Code is more stringent than WDNR NR 151 requirements.

TSS removal was previously analyzed for this pond in the September 2008 Stormwater Calculation Summary provided by Jahnke & Jahnke Associates, Inc. This report established the use of a weighted average of pollutant removal requirement of 66% as compared to no runoff management controls based on the acreage of existing impervious and proposed impervious. Computational analysis provided in this report shows that the pond exceeded this requirement by removing 75% of pollutants.

Pavement added to the site to connect the 2001 S Prairie Ave property with 1901 S Prairie Ave to the north added additional acreage to the drainage area of the pond. Analysis of the current drainage boundaries of the site (**Attachment B**) show a total area of 8.60 acres draining to the wet pond, a difference of 1.80 acres from the drainage area indicated in the Jahnke & Jahnke report. Aerial imagery suggests that this paving was completed

Mr. Josh Meyerhofer, Senior Project Engineer

within the same time frame as the construction of the wet pond, between June 2008 and May 2010. Accounting for this additional acreage, the revised weighted average pollutant removal requirement for this site would be as follows:

		= 69.3% Removal Required
7.87 Ac	Total Impervious	5.452 / 7.870
1.80 Ac	Additional Impervious @ 80%	1.440
3.96 Ac	New Impervious @ 80%	3.168
2.11 Ac	Existing Impervious @ 40%	0.844

The proposed redevelopment of this site will incorporate a 52,300-sf building expansion that will be located fully within the limits of an existing paved parking lot. Two existing satellite buildings, totaling 3,710-sf will be demolished and replaced with paving, and an additional 1,260 sf of paved surface will be added along the eastern edge of the site. In total, the amount of exposed paved surface area will be decreasing by approximately 47,330-sf, thus reducing the overall TSS loads from the development. Analysis of the proposed redevelopment was completed using WinSLAMM software (**Attachment E**), and shows that the TSS reduction provided by the existing pond will increase to 78.12% as constructed.

Infiltration

Per the September 2008 Stormwater Calculation Summary provided by Jahnke & Jahnke Associates, Inc, this site was deemed as exempt from infiltration requirements due to its industrial classification.

Pipe Capacity

Per the City requirement, all storm sewer infrastructure has been designed to convey the 10-year, 24-hr storm event. See **Attachments F & G** for internal drainage boundary delineation and storm sewer pipe sizing calculations, respectively.

collaborāte / formulāte / innovāte

ATTACHMENTS:

Attachment A – Existing Pond Survey Exhibit

Attachment B – Overall Drainage Boundary Exhibit

Attachment C – Pre-Development Hydrologic Calculations

Attachment D – Post-Development Hydrologic Calculations

Attachment E – Water Quality Computations

Attachment F – Internal Storm Sewer Drainage Boundary Exhibit

Attachment G – Storm Sewer Calculations

- Attachment H Storm Water Management Practice Maintenance Agreement (SWA 4654932)
- Attachment I September 2008 Stormwater Calculation Summary (Jahnke & Jahnke Associates)

PMC:pmc

X:\ML\2025\20250121\Design\Reports

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
1	1-yr 24-hr	MSE 24-hr	3	Default	24.00	1	2.40	2
2	2-yr 24-hr	MSE 24-hr	3	Default	24.00	1	2.70	2
3	10-yr 24-hr	MSE 24-hr	3	Default	24.00	1	3.81	2
4	100-yr 24-hr	MSE 24-hr	3	Default	24.00	1	6.18	2

Rainfall Events Listing

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
5.230	69	Pasture/grassland/range, Fair, HSG B (Ex)
5.230	69	TOTAL AREA

SubcatchmentEx: Existing ConditionsRunoff Area=5.230 ac0.00% ImperviousRunoff Depth=0.38"Tc=13.0 minCN=69Runoff=2.05 cfs0.164 af

Total Runoff Area = 5.230 ac Runoff Volume = 0.164 af Average Runoff Depth = 0.38" 100.00% Pervious = 5.230 ac 0.00% Impervious = 0.000 ac

Summary for Subcatchment Ex: Existing Conditions

Runoff = 2.05 cfs @ 12.25 hrs, Volume= Routed to Link 1L : Ex Outfall 0.164 af, Depth= 0.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-yr 24-hr Rainfall=2.40"

SubcatchmentEx: Existing ConditionsRunoff Area=5.230 ac0.00% ImperviousRunoff Depth=0.52"Tc=13.0 minCN=69Runoff=3.08 cfs0.225 af

Total Runoff Area = 5.230 ac Runoff Volume = 0.225 af Average Runoff Depth = 0.52" 100.00% Pervious = 5.230 ac 0.00% Impervious = 0.000 ac

Summary for Subcatchment Ex: Existing Conditions

Runoff = 3.08 cfs @ 12.24 hrs, Volume= Routed to Link 1L : Ex Outfall 0.225 af, Depth= 0.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-yr 24-hr Rainfall=2.70"

SubcatchmentEx: Existing ConditionsRunoff Area=5.230 ac0.00% ImperviousRunoff Depth=1.14"Tc=13.0 minCN=69Runoff=7.85 cfs0.499 af

Total Runoff Area = 5.230 ac Runoff Volume = 0.499 af Average Runoff Depth = 1.14" 100.00% Pervious = 5.230 ac 0.00% Impervious = 0.000 ac

Summary for Subcatchment Ex: Existing Conditions

Runoff = 7.85 cfs @ 12.22 hrs, Volume= Routed to Link 1L : Ex Outfall 0.499 af, Depth= 1.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-yr 24-hr Rainfall=3.81"

Are	ea (ac) CN	Dese	cription			
	5.2	230 69) Past	ure/grassl	and/range,	e, Fair, HSG B	
	5.2	230	100.	00% Pervi	ous Area	l de la construcción de la constru	
٦ miı)	Γc n)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	y Description	
13	.0					Direct Entry,	
				Subca	atchment	nt Ex: Existing Conditions	
					Hydro	Irograph	
	ſ		 				lunoff
	8-1		7.85 cfs			MSE 24-hr 3	
	7-					10-yr 24-hr Rainfall=3.81"	
	6-					Runoff Area=5.230 ac	
fs)	5-			$ = \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$		Runoff Depth=1,14"	
jow (c	- - 4					Tc=13.0 min	
ш	-						
	3-						
	2-						
	1-1					+ - + - + - + - + - +	
	0						
	0	2468	10 12 14 1	6 18 20 22 24	26 28 30 32 3 Tim	34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 ime (hours)	

Printed 6/20/2025 Page 10

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentEx: Existing Conditions Runoff Area=5.230 ac 0.00% Impervious Runoff Depth=2.85" Tc=13.0 min CN=69 Runoff=20.51 cfs 1.244 af

> Total Runoff Area = 5.230 ac Runoff Volume = 1.244 af Average Runoff Depth = 2.85" 100.00% Pervious = 5.230 ac 0.00% Impervious = 0.000 ac

Summary for Subcatchment Ex: Existing Conditions

Runoff = 20.51 cfs @ 12.22 hrs, Volume= Routed to Link 1L : Ex Outfall 1.244 af, Depth= 2.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-yr 24-hr Rainfall=6.18"

Area (ac) CN	Desc	cription			
5.23	0 69	Past	ure/grassla	and/range,	, Fair, HSG B	
5.23	0	100.	00% Pervi	ous Area		
Tc Le (min)	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
13.0					Direct Entry,	_

Subcatchment Ex: Existing Conditions

Events for Subcatchment Ex: Existing Conditions

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1-yr 24-hr	2.40	2.05	0.164	0.38
2-yr 24-hr	2.70	3.08	0.225	0.52
10-yr 24-hr	3.81	7.85	0.499	1.14
100-yr 24-hr	6.18	20.51	1.244	2.85

Eve	ent#	Event	Storm Type Curve Mc		Mode	Duration	B/B	Depth	AMC
		Name				(hours)		(inches)	
	1	1-yr 24-hr	MSE 24-hr	3	Default	24.00	1	2.40	2
	2	2-yr 24-hr	MSE 24-hr	3	Default	24.00	1	2.70	2
	3	10-yr 24-hr	MSE 24-hr	3	Default	24.00	1	3.81	2
	4	100-yr 24-hr	MSE 24-hr	3	Default	24.00	1	6.18	2

Rainfall Events Listing

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.831	69	50-75% Grass cover, Fair, HSG B (Pr)
7.378	98	Paved parking, HSG B (Pr)
0.387	98	Water Surface, HSG B (Pr)
8.596	95	TOTAL AREA

SubcatchmentPr: Proposed ConditionsRunoff Area=8.596 ac90.33% ImperviousRunoff Depth=1.87"Tc=7.5 minCN=95Runoff=25.85 cfs1.337 af

Peak Elev=818.35' Storage=36,257 cf Inflow=25.85 cfs 1.337 af Outflow=1.54 cfs 1.337 af

Pond Ex-P: Existing SW Pond

Total Runoff Area = 8.596 acRunoff Volume = 1.337 afAverage Runoff Depth = 1.87"9.67% Pervious = 0.831 ac90.33% Impervious = 7.765 ac

Summary for Subcatchment Pr: Proposed Conditions

Runoff = 25.85 cfs @ 12.14 hrs, Volume= Routed to Pond Ex-P : Existing SW Pond 1.337 af, Depth= 1.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 1-yr 24-hr Rainfall=2.40"

Area (ac)	CN	Description		
7.378	98	Paved parking	, HSG B	
0.831	69	50-75% Grass	cover, Fair	r, HSG B
0.387	98	Water Surface	, HSG B	
8.596	95	Weighted Aver	rage	
0.831		9.67% Perviou	is Area	
7.765		90.33% Imper	vious Area	
To len	ath 9	Slone Velocity	Canacity	Description
(min) (fe	igin (set)	(ft/ft) (ft/sec)	(cfs)	Description
7.5			(013)	Direct Entry
<i>i</i> .5				Direct Entry,

Subcatchment Pr: Proposed Conditions

Summary for Pond Ex-P: Existing SW Pond

Inflow Are	ea =	8.596 ac, 9	0.33% Impe	ervious,	Inflow Depth =	1.8	87" for	1-yr	24-hr eve	ent
Inflow	=	25.85 cfs @	12.14 hrs,	Volume	= 1.337	' af		•		
Outflow	=	1.54 cfs @	13.30 hrs,	Volume	= 1.337	′af,	Atten=	94%,	Lag= 69	.2 min
Primary	=	1.54 cfs @	13.30 hrs,	Volume	= 1.337	' af			•	
Route	d to Lir	nk 1L : Prop Out	tfall							

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 818.35' @ 13.30 hrs Surf.Area= 20,605 sf Storage= 36,257 cf

Plug-Flow detention time= 330.8 min calculated for 1.337 af (100% of inflow) Center-of-Mass det. time= 330.2 min (1,108.8 - 778.6)

Volume	Inver	t Avail.Sto	rage Storage	e Description
#1	816.43	3' 122,27	79 cf Custor	m Stage Data (Prismatic)Listed below (Recalc)
Elevatio	n S	Surf.Area	Inc.Store	Cum.Store
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)
816.4	3	16,835	0	0
817.0	0	18,611	10,102	10,102
818.0	0	19,765	19,188	29,290
819.0	0	22,199	20,982	50,272
820.0	0	24,617	23,408	73,680
820.5	0	25,900	12,629	86,309
821.0	0	27,230	13,283	99,592
821.5	0	28,631	13,965	113,557
821.8	0	29,518	8,722	122,279
Device	Routing	Invert	Outlet Device	es
#1	Primary	820.60'	10.0' long + Head (feet) 2.50 3.00 3 Coef (Englis	3.0 '/' SideZ x 8.0' breadth Broad-Crested Rectangular Weir 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 .50 4.00 4.50 5.00 5.50 (ab) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64
#2	Primary	816.13'	2.64 2.65 2 18.0" Roun L= 63.4' CF Inlet / Outlet n= 0.012 Cc	a.65 2.66 2.66 2.68 2.70 2.74 d Culvert PP, square edge headwall, Ke= 0.500 Invert= 816.13' / 815.72' S= 0.0065 '/' Cc= 0.900 prrugated PP, smooth interior, Flow Area= 1.77 sf
#3	Device 2	816.28'	6.0" Vert. O	rifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Device 2	818.99'	24.0" Horiz. Limited to we	Orifice/Grate C= 0.600 eir flow at low heads
#5	Primary	816.63'	4.0" Round L= 81.3' CP Inlet / Outlet n= 0.010 PV	l Culvert PP, end-section conforming to fill, Ke= 0.500 Invert= 816.63' / 814.51' S= 0.0261 '/' Cc= 0.900 /C, smooth interior, Flow Area= 0.09 sf
#6	Device 5	817.94'	4.0" Horiz. (Drifice/Grate C= 0.600 Limited to weir flow at low heads

Weldall Manufacturing (Revised Expansion) Prepared by Graef-USA HydroCAD® 10.20-4c s/n 07832 © 2024 HydroCAD Software Solutions LLC

Primary OutFlow Max=1.54 cfs @ 13.30 hrs HW=818.35' (Free Discharge) -1=Broad-Crested Rectangular Weir(Controls 0.00 cfs) **2=Culvert** (Passes 1.27 cfs of 9.54 cfs potential flow) -3=Orifice/Grate (Orifice Controls 1.27 cfs @ 6.49 fps) -4=Orifice/Grate (Controls 0.00 cfs) **5=Culvert** (Passes 0.27 cfs of 0.46 cfs potential flow) Ł

-6=Orifice/Grate (Orifice Controls 0.27 cfs @ 3.06 fps)

Pond Ex-P: Existing SW Pond

SubcatchmentPr: Proposed ConditionsRunoff Area=8.596 ac90.33% ImperviousRunoff Depth=2.16"Tc=7.5 minCN=95Runoff=29.60 cfs1.545 af

Peak Elev=818.63' Storage=42,190 cf Inflow=29.60 cfs 1.545 af Outflow=1.72 cfs 1.545 af

Pond Ex-P: Existing SW Pond

Total Runoff Area = 8.596 ac Runoff Volume = 1.545 af Average Runoff Depth = 2.16" 9.67% Pervious = 0.831 ac 90.33% Impervious = 7.765 ac

Summary for Subcatchment Pr: Proposed Conditions

Runoff = 29.60 cfs @ 12.14 hrs, Volume= Routed to Pond Ex-P : Existing SW Pond 1.545 af, Depth= 2.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 2-yr 24-hr Rainfall=2.70"

CN	Description				
98	Paved parking	, HSG B			
69	50-75% Grass	cover, Fair	r, HSG B		
98	Water Surface	, HSG B			
95	Weighted Aver	age			
	9.67% Perviou	s Area			
7.765 90.33% Impervious Area					
ath 9	Slone Velocity	Canacity	Description		
et)	(ft/ft) (ft/sec)	(cfs)	Description		
,		()	Direct Entry,		
	CN 98 69 98 95 95 gth s et)	CNDescription98Paved parking6950-75% Grass98Water Surface95Weighted Aver9.67% Perviou90.33% Imperviou90.33% Imperview90.33% ImperviewgthSlopeVelocityet)(ft/ft)(ft/sec)	CNDescription98Paved parking, HSG B6950-75% Grass cover, Fai98Water Surface, HSG B95Weighted Average9.67% Pervious Area90.33% Impervious Area90.33% Impervious AreagthSlopeVelocityCapacityet)(ft/ft)(ft/sec)(cfs)		

Subcatchment Pr: Proposed Conditions

Summary for Pond Ex-P: Existing SW Pond

Inflow Are	a =	8.596 ac, 9	0.33% Imp	ervious,	Inflow Depth =	2.16"	for 2-yr	24-hr event	
Inflow	=	29.60 cfs @	12.14 hrs,	Volume	= 1.545	af	-		
Outflow	=	1.72 cfs @	13.32 hrs,	Volume	= 1.545	af, Att	en= 94%,	Lag= 70.4 mi	in
Primary	=	1.72 cfs @	13.32 hrs,	Volume	= 1.545	af		-	
Routed	l to Link	: 1L : Prop Õu	tfall						

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 818.63' @ 13.32 hrs Surf.Area= 21,294 sf Storage= 42,190 cf

Plug-Flow detention time= 341.0 min calculated for 1.544 af (100% of inflow) Center-of-Mass det. time= 341.5 min (1,117.3 - 775.8)

Volume	Invei	rt Avail.Sto	rage Storage	e Description
#1	816.43	3' 122,27	79 cf Custom	n Stage Data (Prismatic)Listed below (Recalc)
Elevatio	n S	Surf.Area	Inc.Store	Cum.Store
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)
816.4	3	16,835	0	0
817.0	0	18,611	10,102	10,102
818.0	0	19,765	19,188	29,290
819.0	0	22,199	20,982	50,272
820.0	0	24,617	23,408	73,680
820.5	0	25,900	12,629	86,309
821.0	0	27,230	13,283	99,592
821.5	0	28,631	13,965	113,557
821.8	0	29,518	8,722	122,279
Device	Routing	Invert	Outlet Device	es
#1	Primary	820.60'	10.0' long + Head (feet) 0 2.50 3.00 3. Coef. (English 2.64 2.65 2.	3.0 '/' SideZ x 8.0' breadth Broad-Crested Rectangular Weir 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 .50 4.00 4.50 5.00 5.50 h) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 .65 2.66 2.66 2.68 2.70 2.74
#2	Primary	816.13'	18.0" Round L= 63.4' CP Inlet / Outlet I n= 0.012 Con	d Culvert P, square edge headwall, Ke= 0.500 Invert= 816.13' / 815.72' S= 0.0065 '/' Cc= 0.900 prrugated PP, smooth interior, Flow Area= 1.77 sf
#3	Device 2	816.28'	6.0" Vert. Or	rifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Device 2	818.99'	24.0" Horiz.	Orifice/Grate C= 0.600 eir flow at low heads
#5	Primary	816.63'	4.0" Round L= 81.3' CP Inlet / Outlet I n= 0.010 PV	Culvert 'P, end-section conforming to fill, Ke= 0.500 Invert= 816.63' / 814.51' S= 0.0261 '/' Cc= 0.900 'C, smooth interior, Flow Area= 0.09 sf
#6	Device 5	817.94'	4.0" Horiz. O	Drifice/Grate C= 0.600 Limited to weir flow at low heads

Weldall Manufacturing (Revised Expansion) Prepared by Graef-USA HydroCAD® 10.20-4c s/n 07832 © 2024 HydroCAD Software Solutions LLC

Primary OutFlow Max=1.72 cfs @ 13.32 hrs HW=818.63' (Free Discharge) -1=Broad-Crested Rectangular Weir(Controls 0.00 cfs) **2=Culvert** (Passes 1.37 cfs of 10.67 cfs potential flow) -3=Orifice/Grate (Orifice Controls 1.37 cfs @ 6.97 fps) -4=Orifice/Grate (Controls 0.00 cfs) **5=Culvert** (Passes 0.35 cfs of 0.48 cfs potential flow) Ł

-6=Orifice/Grate (Orifice Controls 0.35 cfs @ 3.99 fps)

Pond Ex-P: Existing SW Pond

SubcatchmentPr: Proposed Conditions Runoff Area=8.596 ac 90.33% Impervious Runoff Depth=3.24" Tc=7.5 min CN=95 Runoff=43.37 cfs 2.324 af

> Peak Elev=819.34' Storage=58,055 cf Inflow=43.37 cfs 2.324 af Outflow=6.42 cfs 2.324 af

Pond Ex-P: Existing SW Pond

Total Runoff Area = 8.596 acRunoff Volume = 2.324 afAverage Runoff Depth = 3.24"9.67% Pervious = 0.831 ac90.33% Impervious = 7.765 ac

Summary for Subcatchment Pr: Proposed Conditions

Runoff = 43.37 cfs @ 12.14 hrs, Volume= Routed to Pond Ex-P : Existing SW Pond

2.324 af, Depth= 3.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 10-yr 24-hr Rainfall=3.81"

 Area (ac)	CN	Description	
7.378	98	Paved parking, HSG B	
0.831	69	50-75% Grass cover, Fair, HSG B	
 0.387	98	Water Surface, HSG B	
8.596	95	Weighted Average	
0.831		9.67% Pervious Area	
7.765		90.33% Impervious Area	
- ·			
IC Leng	th S	slope Velocity Capacity Description	
 <u>(min)</u> (fee	et)	(ft/ft) (ft/sec) (cfs)	
7.5		Direct Entry,	

Subcatchment Pr: Proposed Conditions

Summary for Pond Ex-P: Existing SW Pond

Inflow Area	a =	8.596 ac, 9	0.33% Imp	ervious,	Inflow Depth =	3.24	" for	10-yı	⁻ 24-hr	event
Inflow	=	43.37 cfs @	12.14 hrs,	Volume	= 2.324	af		•		
Outflow	=	6.42 cfs @	12.54 hrs,	Volume	= 2.324	af, A	tten= 8	5%,	Lag=	24.0 min
Primary	=	6.42 cfs @	12.54 hrs,	Volume	= 2.324	af			•	
Routed	to Link	: 1L : Prop Ōu	tfall							

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 819.34' @ 12.54 hrs Surf.Area= 23,031 sf Storage= 58,055 cf

Plug-Flow detention time= 316.1 min calculated for 2.324 af (100% of inflow) Center-of-Mass det. time= 315.5 min (1,083.5 - 768.0)

Volume	Inver	t Avail.Stor	rage Storag	je Description
#1	816.43	8' 122,27	'9 cf Custo	m Stage Data (Prismatic)Listed below (Recalc)
Elevatio	n S	Surf.Area	Inc.Store	Cum.Store
(fee	t)	(sq-ft)	(cubic-feet)	(cubic-feet)
816.4	3	16,835	0	0
817.0	0	18,611	10,102	10,102
818.0	0	19,765	19,188	29,290
819.0	0	22,199	20,982	50,272
820.0	0	24,617	23,408	73,680
820.5	0	25,900	12,629	86,309
821.0	0	27,230	13,283	99,592
821.5	0	28,631	13,965	113,557
021.0	0	29,516	0,122	122,279
Device	Routing	Invert	Outlet Devic	ces
#1	Primary	820.60'	10.0' long Head (feet)	+ 3.0 '/' SideZ x 8.0' breadth Broad-Crested Rectangular Weir 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 3 50 4 00 4 50 5 00 5 50
#0	Deiroom	046 401	Coef. (Engli 2.64 2.65 2	(sh) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.65 2.66 2.66 2.68 2.70 2.74
#Z	Primary	816.13	L= 63.4' C	PP, square edge headwall, Ke= 0.500 t Invert= 816.13' / 815.72' S= 0.0065 '/' Cc= 0.900 errugated PB, smooth interior, Elew Area= 1.77 sf
#3	Device 2	816 28'	60" Vert C	Drifice/Grate C= 0.600 Limited to weir flow at low heads
#0 #4	Device 2	818 99'	24.0" Horiz	Orifice/Grate C= 0.600
	201100 2	010100	Limited to w	eir flow at low heads
#5	Primary	816.63'	4.0" Round	d Culvert
			L= 81.3' Cl Inlet / Outlet n= 0.010 P	PP, end-section conforming to fill, Ke= 0.500 t Invert= 816.63' / 814.51' S= 0.0261 '/' Cc= 0.900 VC. smooth interior. Flow Area= 0.09 sf
#6	Device 5	817.94'	4.0" Horiz.	Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=6.41 cfs @ 12.54 hrs HW=819.34' (Free Discharge) 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs) 2=Culvert (Passes 5.91 cfs of 13.10 cfs potential flow) -3=Orifice/Grate (Orifice Controls 1.59 cfs @ 8.08 fps) 4=Orifice/Grate (Weir Controls 4.32 cfs @ 1.94 fps) 5=Culvert (Passes 0.50 cfs of 0.52 cfs potential flow) 6=Orifice/Grate (Orifice Controls 0.50 cfs @ 5.70 fps)

Pond Ex-P: Existing SW Pond

SubcatchmentPr: Proposed ConditionsRunoff Area=8.596 ac90.33% ImperviousRunoff Depth=5.59"Tc=7.5 minCN=95Runoff=72.36 cfs4.005 af

Peak Elev=820.57' Storage=88,165 cf Inflow=72.36 cfs 4.005 af Outflow=16.94 cfs 4.005 af

Pond Ex-P: Existing SW Pond

Total Runoff Area = 8.596 acRunoff Volume = 4.005 afAverage Runoff Depth = 5.59"9.67% Pervious = 0.831 ac90.33% Impervious = 7.765 ac

Summary for Subcatchment Pr: Proposed Conditions

Runoff = 72.36 cfs @ 12.14 hrs, Volume= Routed to Pond Ex-P : Existing SW Pond 4.005 af, Depth= 5.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs MSE 24-hr 3 100-yr 24-hr Rainfall=6.18"

	Area (ac)	CN	Description			
	7.378	98	Paved parking	, HSG B		
	0.831	69	50-75% Grass	cover, Fair	r, HSG B	
	0.387	98	Water Surface	, HSG B		
	8.596	95	Weighted Ave	rage		
	0.831		9.67% Perviou	is Area		
	7.765		90.33% Imper	vious Area		
	T . 1			O a m a aite i	Description	
,		gin s	slope velocity	Capacity	Description	
(I	min) (fee	et)	(ft/ft) (ft/sec)	(CfS)		
	7.5				Direct Entry,	
	7.5				Direct Entry,	

Subcatchment Pr: Proposed Conditions

Summary for Pond Ex-P: Existing SW Pond

Inflow Area	a =	8.596 ac, 9	0.33% Imp	ervious, Infl	ow Depth =	5.59"	for 100-	yr 24-hr event
Inflow	=	72.36 cfs @	12.14 hrs,	Volume=	4.005	af		
Outflow	=	16.94 cfs @	12.40 hrs,	Volume=	4.005	af, Atte	n= 77%,	Lag= 15.6 min
Primary	=	16.94 cfs @	12.40 hrs,	Volume=	4.005	af		-
Routed	to Link	1L : Prop Ou	tfall					

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 820.57' @ 12.40 hrs Surf.Area= 26,090 sf Storage= 88,165 cf

Plug-Flow detention time= 231.6 min calculated for 4.005 af (100% of inflow) Center-of-Mass det. time= 231.0 min (989.3 - 758.3)

Volume	Inver	t Avail.Stor	age Storage	Description
#1	816.43	8' 122,27	'9 cf Custom	n Stage Data (Prismatic)Listed below (Recalc)
Elevatio	n S	Surf.Area	Inc.Store	Cum.Store
(feet	t)	(sq-ft)	(cubic-feet)	(cubic-feet)
816.4	3	16,835	0	0
817.0	0	18,611	10,102	10,102
818.0	0	19,765	19,188	29,290
819.0	0	22,199	20,982	50,272
820.0	0	24,617	23,408	73,680
820.5	0	25,900	12,629	86,309
821.0	0	27,230	13,283	99,592
821.5	0	28,631	13,965	113,557
821.8	0	29,518	8,722	122,279
Device	Routing	Invert	Outlet Device	es
#1	Primary	820.60'	10.0' long + Head (feet) 0 2.50 3.00 3.5 Coef. (English 2.64 2.65 2.6	3.0 '/' SideZ x 8.0' breadth Broad-Crested Rectangular Weir 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 50 4.00 4.50 5.00 5.50 h) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 65 2.66 2.66 2.68 2.70 2.74
#2	Primary	816.13'	18.0" Round L= 63.4' CPF Inlet / Outlet In n= 0.012 Cor	d Culvert P, square edge headwall, Ke= 0.500 Invert= 816.13' / 815.72' S= 0.0065 '/' Cc= 0.900 rrugated PP, smooth interior, Flow Area= 1.77 sf
#3	Device 2	816.28'	6.0" Vert. Ori	ifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Device 2	818.99'	24.0" Horiz. (Orifice/Grate C= 0.600 ir flow at low heads
#5	Primary	816.63'	4.0" Round (L= 81.3' CPF Inlet / Outlet In n= 0.010 PV(Culvert P, end-section conforming to fill, Ke= 0.500 Invert= 816.63' / 814.51' S= 0.0261 '/' Cc= 0.900 C, smooth interior, Flow Area= 0.09 sf
#6	Device 5	817.94'	4.0" Horiz. O	Drifice/Grate C= 0.600 Limited to weir flow at low heads

Weldall Manufacturing (Revised Expansion)MSE 24Prepared by Graef-USAHydroCAD® 10.20-4cs/n 07832© 2024 HydroCAD Software Solutions LLC

Primary OutFlow Max=16.94 cfs @ 12.40 hrs HW=820.57' (Free Discharge) 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs) 2=Culvert (Inlet Controls 16.35 cfs @ 9.25 fps) 3=Orifice/Grate (Passes < 1.90 cfs potential flow) 4=Orifice/Grate (Passes < 19.02 cfs potential flow) 5=Culvert (Barrel Controls 0.59 cfs @ 6.78 fps) 6=Orifice/Grate (Passes 0.59 cfs of 0.68 cfs potential flow)

Pond Ex-P: Existing SW Pond

Events for Subcatchment Pr: Proposed Conditions

Event	Rainfall	Runoff	Volume	Depth
	(inches)	(cfs)	(acre-feet)	(inches)
1-yr 24-hr	2.40	25.85	1.337	1.87
2-yr 24-hr	2.70	29.60	1.545	2.16
10-yr 24-hr	3.81	43.37	2.324	3.24
100-yr 24-hr	6.18	72.36	4.005	5.59

Events for Pond Ex-P: Existing SW Pond

Event	Inflow	Primary	Elevation	Storage
	(cfs)	(cfs)	(feet)	(cubic-feet)
1-yr 24-hr	25.85	1.54	818.35	36,257
2-yr 24-hr	29.60	1.72	818.63	42,190
10-yr 24-hr	43.37	6.42	819.34	58,055
100-yr 24-hr	72.36	16.94	820.57	88,165

Data file name: X:\ML\2025\20250121\Design\Calcs\Stormwater\Weldall Mfg - WinSLAMM.mdb WinSLAMM Version 10.5.0 Rain file name: C:\WinSLAMM Files\Rain Files\WisReg - Madison WI 1981.RAN Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI SL06 Dec06.rsvx Residential Street Delivery file name: C:\WinSLAMM Files\WI Res and Other Urban Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI_Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Apply Street Delivery Files to Adjust the After Event Load Street Dirt Mass Balance: False Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI GEO03.ppdx Source Area PSD and Peak to Average Flow Ratio File: C:\WinSLAMM Files\NURP Source Area PSD Files.csv Cost Data file name: If Other Device Pollutant Load Reduction Values = 1, Off-site Pollutant Loads are Removed from Pollutant Load % Reduction calculations Seed for random number generator: -42 Study period starting date: 01/01/81 Study period ending date: 12/31/81 Start of Winter Season: 12/02 End of Winter Season: 03/12 Date: 06-20-2025 Time: 11:36:31 Site information: LU# 1 - Industrial: Industrial 1 Total area (ac): 8.596 Connected PSD File: C:\WinSLAMM Files\NURP.cpz Source Area PSD File: C:\WinSLAMM Files\NURP.cpz Disconnected Normal Silty PSD File: C:\WinSLAMM Files\NURP.cpz Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 1 - Roofs 1: 2.349 ac. Pitched 2 - Roofs 2: 0.009 ac. Pitched Connected PSD File: C:\WinSLAMM Files\NURP.cpz Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 13 - Paved Parking 1: 3.986 ac. 14 - Paved Parking 2: 1.034 ac. Disconnected Normal Silty PSD File: C:\WinSLAMM Files\NURP.cpz Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 51 - Small Landscaped Areas 1: 0.831 ac. Normal Silty PSD File: C:\WinSLAMM Files\NURP.cpz Source Area PSD File: C:\WinSLAMM Files\NURP.cpz 70 - Water Body Areas: 0.387 ac. PSD File: Source Area PSD File: Control Practice 1: Wet Detention Pond CP# 1 (DS) - DS Wet Pond # 1 Particle Size Distribution file name: Not needed - calculated by program Initial stage elevation (ft): 5.33 Peak to Average Flow Ratio: 3.8 Maximum flow allowed into pond (cfs): No maximum value entered Outlet Characteristics: Outlet type: Orifice 1 Orifice diameter (ft): 0.5 2. Number of orifices: 1 3. Invert elevation above datum (ft): 5.18 Outlet type: Orifice 2 1. Orifice diameter (ft): 0.33 2. Number of orifices: 1 3. Invert elevation above datum (ft): 6.84 Outlet type: Broad Crested Weir 1. Weir crest length (ft): 10 2. Weir crest width (ft): 8 3. Height from datum to bottom of weir opening: 9.5 Outlet type: Vertical Stand Pipe 1. Stand pipe diameter (ft): 2 2. Stand pipe height above datum (ft): 7.89 Pond stage and surface area Pond Area Natural Seepage Other Outflow Entry Stage Number (ft) (acres) (in/hr) (cfs) 0.00 0.0000 Ò.00 Ò.0Ó 0 0.01 0.0010 0.00 0.00 1 2 0.30 0.0714 0.00 0.00 3 0.40 0.0830 0.00 0.00 0.90 4 0.1270 0.00 0.00 5 1.90 0.1840 0.00 0.00 2.20 6 0.1990 0.00 0.00 7 2.30 0.2050 0.00 0.00 8 2.90 0.2360 0.00 0.00 3.90 0.2920 0.00 9 0.00 10 4.90 0.3570 0.00 0.00 11 5.33 0.3870 0.00 0.00 12 5.90 0.4270 0.00 0.00 13 6.90 0.4540 0.00 0.00 14 7.90 0.5100 0.00 0.00 15 8.90 0.5650 0.00 0.00 0.00 0.5950 9.40 0.00 16 17 9.50 0.6010 0.00 0.00 18 9.90 0.6250 0.00 0.00 19 10.40 0.6570 0.00 0.00 20 10.70 0.6780 0.00 0.00

Total of all Land Uses without Controls:

Annualized Total After Outfall Controls:

Outfall Total with Controls:

Data file name: X:\ML\2025\20250121\Design\Calcs\Stormwater\Weldall Mfg - WinSLAMM.mdb WinSLAMM Version 10.5.0 Rain file name: C:\WinSLAMM Files\Rain Files\WisReg - Madison WI 1981.RAN Particulate Solids Concentration file name: C:\WinSLAMM Files\v10.1 WI_AVG01.pscx Runoff Coefficient file name: C:\WinSLAMM Files\WI_SL06 Dec06.rsvx Pollutant Relative Concentration file name: C:\WinSLAMM Files\WI GEO03.ppdx Residential Street Delivery file name: C:\WinSLAMM Files\WI_Res and Other Urban Dec06.std Institutional Street Delivery file name: C:\WinSLAMM Files\WI Com Inst Indust Dec06.std Commercial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Industrial Street Delivery file name: C:\WinSLAMM Files\WI_Com Inst Indust Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files\WI_Res and Other Urban Dec06.std Freeway Street Delivery file name: C:\WinSLAMM Files\Freeway Dec06.std Apply Street Delivery Files to Adjust the After Event Load Street Dirt Mass Balance: False Source Area PSD and Peak to Average Flow Ratio File: C:\WinSLAMM Files\NURP Source Area PSD Files.csv Cost Data file name: If Other Device Pollutant Load Reduction Values = 1, Off-site Pollutant Loads are Removed from Pollutant Load % Reduction calculations Seed for random number generator: -42 Study period starting date: 01/01/81 Start of Winter Season: 12/02 Study period ending date: 12/31/81 End of Winter Season: 03/12 Model Run Start Date: 01/01/81 Model Run End Date: 12/31/81 Date of run: 06-20-2025 Time of run: 11:37:11 Total Area Modeled (acres): 8.596 Years in Model Run: 1.00 Runoff Percent Particulate Particulate Percent Runoff Solids Solids Particulate Volume (cu ft) Volume Conc. Yield Solids Reduction (mg/L) (lbs) Reduction

-0.27%

146.9

32.07

5319

1164

1167

78.12%

579958

581526

583123

LEGEND								
	-PERVI	OUS AREA		,′ ≲ ,′				
	-IMPER	VIOUS SURFACE	AREA	l⊘ w∨ I)	
	-BUILDI	ING						
	-OVERA	ALL DRAINAGE BO	DUNDARY	 ≪			/	
	-INTERI	NAL DRAINAGE B	OUNDARY				2	
	——————————————————————————————————————	OW PATH						
	/			• \$				
							·	
				≪				
×.						1 }	· · · · · · · · · · · · · · · · · · ·	and the second
				≤ '-,				
				'_				
		× ,		≪		م مراجع		
			· · · · · · · · · · · · · · · · · · ·					
				 				·····
		· · · · · · · · · · · · · · · · · · ·						
Ň					V I I I I V I V I V I V I V			
				 ⊗ wv				
				×				
			(
			·	``-`, ≪ ``, ``		1		$\left \int dx \right ^{2} = \int dx \left \int dx \right ^{2} dx dx = \int dx \left \int dx \right ^{2} dx dx = \int dx dx dx dx = \int dx dx dx dx dx dx dx dx = \int dx $
					······································			
, , , ,			 	≪		`` ,		
			. Jenner					
ŕ								
				0				
							, and the second	
						,		
, ^{(*}				×.		\ \		
)/ /1	Щ ,				and the second
				-	-€ IGV ``			
				Å.				
			ĺ	S T				
			 ,7					
			1					
							4	
, * [*]	· · · · · · · · · · · · · · · · · · ·		 			$\lambda = \lambda = \lambda = \lambda$ $\lambda = \lambda = \lambda$ $\lambda = \lambda = 1$ $\lambda = \lambda = 1$ $\lambda = \lambda = 1$ $\lambda = \lambda = 1$		
			· · · · · · · · · · · · · · · · · · ·		3"		823	
						F0 - ` ``	FO	
5.31"E N	88° 07' 25.31"E			Ø WV			822	
0	853.540	······································			B ₇ B		821	
				Ŵ		14	G 16"	-16" 820
						817-0816		5888875 25 W 345.6
		```````````````````````````````````````					814-813-81-2	12" 
							811-	
					B 15"			- <b>8</b> 70
			, , ,					8.4
						$\begin{array}{c} \chi_{1} = - \left( \begin{array}{c} \chi_{1} = \frac{1}{2} + 1$		899 100 100 100 100 100 100 100 100 100 1
							, 807-	
					· · · · · · · · · · · · · · · · · · ·	15"		60-7-7-
							808	
	Y.						809	
							3-15×	
								812 812
								E P
				[^]			818	V. Televis
								19
<b></b>								.01-
AREA SL	JMMARY							
	IMPERVIOUS	PERVIOUS	TOTAL		OVERLAND T			.820
	AREA (Ac.)	AREA (Ac.)	AREA (Ac.)		(MIN)			
DA-1	0.03	0.02	0.05	0.65	0.82			10
DA-2	0.38	0.20	0.58	0.71	4.34			
DA-3	0.44	0.00	0.44	0.95	4.36			
DA-4	0.61	0.00	0.61	0.95	3.76			
DA-5	0.31	0.00	0.31	0.95	2.28	4		
DA-6	0.33	0.00	0.33	0.95	1.68	4		х. Х.
	0.77	0.00	0.77	0.95	3.37	4		
	1.20	0.12	1.32	0.89	6.60	_		
	0.31	0.00	0.31	0.95	0.60	-		
	0.49	0.00	0.49	0.95	0.60	-		and the second
$\frac{RD-3}{RD-4}$	0.49	0.00	0.49	0.95	0.60	-		
						1		

RD-5 0.49

0.00

0.95

0.49

0.60



Storm Sewers v2024.00



<u> </u>	
0	
0	
Φ	
R	
>	
Ś	

Page 1

Storm Sewers

## MyReport

	) ኒ	,							
HGL Jnct	Vel Ave	Vel Hd Dn	Vel Hd Up	EGL Dn	Up Up	EGL Jnct	DnStm Ln No		
(ft)	(ft/s)	(ft)	(ft)	(ft)	(ft)	(ft)			
819.84	4.88	0.36	0.38	819.70	819.95	820.21	Outfall		
821.07	6.20	09.0	09.0	820.43	821.17	821.67	-		
821.85	6.23	09.0	09.0	821.67	821.85	822.46	N		
823.00	6.10	0.58	0.58	822.43	823.00	823.57	ო		
822.73	5.41	0.46	0.46	822.31	822.73	823.19	ო		
823.36	4.61	0.33	0.33	823.06	823.36	823.69	£		
824.50	5.35	0.45	0.45	823.81	824.50	824.95	Q		
825.08	3.68	0.21	0.21	824.71	825.08	825.29	7		
825.08	0.27	0.00	0.00	825.08	825.08	825.08	ø		
825.09	0.30	0.00	0.00	825.08	825.09	825.09	თ		
825.53	3.86	0.23	0.23	825.31	825.53	825.77	Ø		
825.64	6.10	0.58	0.58	825.08	825.64	826.22	7		
824.50	6.10	0.58	0.58	823.94	824.50	825.08	Q		
823.87	6.10	0.58	0.58	823.31	823.87	824.45	£		
825.49	4.27	0.28	0.28	824.79	825.49	825.78	7		
Project Fi	ile: Wel	Idall Mfg	- Storm	Sewer Si:	zing.stm			Number of lines: 15	Date: 6/23/2025
NOTES:	** Critic	al depth	_						

Storm Sewers

Triple D Management, LLC. and Weld-all Manufacturing, as "Owner" of the property described below, in accordance with Chapter 32 City of Waukesha Storm Water Management and Erosion Control, agrees to install and maintain storm water management practice(s) on the subject property in accordance with approved plans and Storm Water Management Plan conditions. The owner further agrees to the terms stated in this document to ensure that the storm water management practice(s) continues serving the intended functions in perpetuity. This Agreement includes the following exhibits:

**Exhibit A:** <u>Legal Description</u> of the real estate for which this Agreement applies ("Property").

**Exhibit B:** Location Map(s) – shows an accurate location of each storm water management practice affected by this Agreement.

**Exhibit C:** <u>Maintenance Plan</u> – prescribes those activities that must be carried out to maintain compliance with this Agreement.

Note: After construction verification has been accepted by the City of Waukesha, for all planned storm water management practices, an <u>addendum(s)</u> to this agreement shall be recorded by the Owner showing design and construction details. The addendum(s) may contain several additional exhibits, including certification by City of Waukesha of Storm Water and Erosion Control Permit termination, as described below.

Through this Agreement, the Owner hereby subjects the Property to the following covenants, conditions and restrictions:

- 1. The Owner shall be responsible for the routine and extraordinary maintenance and repair of the storm water management practice(s) and drainage easements identified in Exhibit B until Storm Water and Erosion Control Permit termination by the City of Waukesha in accordance with Chapter 32 of the City Code of Ordinances.
- 2. After Storm Water and Erosion Control Permit termination under 1., the current Owner(s) shall be solely responsible for maintenance and repair of the storm water management practices and drainage easements in accordance with the maintenance plan contained in Exhibit C.
- 3. The Owner(s) shall, at their own cost, complete inspections of the storm water management practices at the time intervals listed in Exhibit C, and conduct the inspections by a qualified professional, file the reports with the City of Waukesha after each inspection and complete any maintenance or repair work recommended in the report. The Owner(s) shall be liable for the failure to undertake any maintenance or repairs. After the work is completed by the Contractor, the qualified professional shall verify that the work was properly completed and submit the follow-up report to the City within 30 days.
- 4. In addition, and independent of the requirements under paragraph 3 above, the City of Waukesha, or its designee, is authorized to access the property as necessary to conduct inspections of the storm water management practices or drainage easements to ascertain compliance with the intent of this Agreement and the activities prescribed in Exhibit C. The City of Waukesha may require work to be done which differs from the report described in paragraph 3 above, if the City of Waukesha reasonably concludes that such work is necessary and consistent with the intent of this agreement. Upon notification by the City of Waukesha of required maintenance or repairs, the Owner(s) shall complete the specified maintenance or repairs within a reasonable time frame determined by the City of Waukesha.
- 5. If the Owner(s) do not complete an inspection under item 3 above or required maintenance or repairs under item 4 above within the specified time period, the City of Waukesha is authorized, but not required, to perform the specified inspections, maintenance or repairs. In the case of an emergency situation, as determined by the City of Waukesha, no notice shall be required prior to the City of Waukesha performing emergency maintenance or repairs. The City of Waukesha may levy the costs and expenses of such inspections, maintenance or repair related actions as a special charge against the Property and collected as such in accordance with the procedures under s. 66.0627 Wis. Stats. or subch. VII of ch. 66 Wis. Stats.

4654932

REGISTER OF DEEDS WAUKESHA COUNTY, WI RECORDED ON March 03, 2022 03.05 PM James R Behrend Register of Deeds 17 PGS TOTAL FEE:\$30.00 TRANS FEE:\$0.00 Book Page -

Name and Return Address

City of Waukesha -130-Delafield Street Waukesha, WI 53188

> WAKC 1355-991-002 Parcel Identification Number(s) – (PIN)

6. This Agreement shall run with the Property and be binding upon all heirs, successors and assigns. After the Owner records the addendum noted above, the City of Waukesha shall have the sole authority to modify this agreement upon a 30-day notice to the current Owner(s).

Dated this <u>Hand</u> day of <u>February</u>, 2019.

**Owner**:

Dave Bahl, Sr., President

Dave Bahl, Sr. (Owners Typed Name)

#### Acknowledgements

State of Wisconsin: County of Waukesha

Personally came before me this 8th/₂ day of _July February, 2019, the above named <u>Dave Bahl, Sr.</u> to me known to be the person who executed the foregoing instrument and acknowledged the same.



Name

Notary Public, Waukesha County, WI My commission expires: 04/03/2023.

This document was drafted by:

Craig Donze, PE PLS One Source Consulting 19435 W. Capitol Drive Brookfield, WI 53045 City of Waukesha Common Council Approval

Dated this 36 201 day of

Shawn N. Reilly, Mayor

Gina Kozlik, City Clerk

#### Acknowledgements

1

Î

State of Wisconsin: County of Waukesha

Shawn Mi Reilly

Personally came before me this 20 day of <u>Hebruary</u>, 2019; the above named <u>Gina KozliK</u> to me known to be the person who executed the foregoing instrument and acknowledged the same.

. *



[Name] Sandee L. Policello Notary Public, Waukesha County, WI My commission expires: 3-24-2022

#### (Sample) Exhibit A – Legal Description

The following description and reduced copy map identifies the land parcel(s) affected by this Agreement. For a larger scale view of the referenced document, contact the Waukesha County Register of Deeds office.

Project Identifier:Weld-All ManufacturingAcres: 16.110 AcresDate of Recording:February 11, 2009Map Produced By:Jahnke & Jahnke Assoc., Inc. Waukesha, WI 53188Legal Description:Lot 1 of CSM 10650, being a part of the NW 1/4 and NE 1/4 of the SW 1/4 and SE 1/4 ofthe NW 1/4 of Section 15, Township 6N, Range 19E, City of Waukesha, Waukesha County, Wisconsin.



#### **Exhibit B - Location Map** Storm Water Management Practices Covered by this Agreement

The storm water management practices covered by this Agreement are depicted in the reduced copy of a portion of the construction plans, as shown below. The practices include two wet detention basins and all associated conveyance swales, pipes, earthen berms, and other components of these practices. All of the noted storm water management practices are located on the subject property, as noted in Exhibit A.

Project Identifier:Weld-All Manufacturing, 2001 S. Prairie AvenueStorm water Practices:South Wet Detention Basin (Constructed in 1997)Location of Practices:2001 S. Prairie Avenue, Waukesha, WI



<u>Temporary Right-of-Entry Easement</u>: Permission is hereby granted to the City of Waukesha or their designee to access the entirety of the property described in Exhibit A for the purposes of inspecting the stormwater management features contained therein. The City of Waukesha shall notify the property owner of the City's intent to inspect said facilities not less than 3 days prior to entering said property. By exercising this right-of-entry, the City of Waukesha agrees, as required by Wisconsin law, to pay any liabilities arising out of the exercise of rights of entry whenever those liabilities result from an act or omission of an employee or acting agent within the scope of their authority. The right-of-entry shall expire only upon termination by the City of Waukesha.

#### Exhibit C Storm Water Practice Maintenance Plan

This exhibit explains the basic function of each of the storm water practices listed in Exhibit B and prescribes the minimum maintenance requirements to remain compliant with this Agreement. The maintenance activities listed below are aimed to ensure these practices continue serving their intended functions in perpetuity. The list of activities is not all inclusive, but rather indicates the minimum type of maintenance that can be expected for this particular site. Access to the stormwater practices for maintenance vehicles is shown in Exhibit B. Any failure of a storm water practice that is caused by a lack of maintenance will subject the Owner(s) to enforcement of the provisions listed on page 1 of this Agreement by the City of Waukesha.

#### System Description (West Wet Detention Basin):

The west wet detention basin was constructed in 2009 and designed to trap 80% of sediment in runoff and maintain pre-development downstream peak flows. The west pond includes a 4 foot deep forebay that is connected to the main pool. The forebay will trap coarse sediments in runoff, such as road sands, thus reducing maintenance of the main basin. The main pool will trap the finer suspended sediment. To do this, the pond size, water level and outlet structures must be maintained as specified in this Agreement (see Figures 1, 2 and 3).

The main basin receives runoff from a 6.8 acre drainage area which primarily includes the lands north of the building. During high rainfall or snow melt events, the water level will temporarily rise and slowly drain down to the elevation of the control structure. The water level is controlled by a 24-inch concrete pipe extending through the berm on the southwest corner of the basin (see Figures 1 and 3). The discharge from the wet detention basin drains into the west pond located at the northwest corner of the property adjacent to the cul de sac at the south end of Prairie Avenue. The outlet structure includes a 2-inch low flow orifice that controls the water level and causes the pond to temporarily rise during runoff events. High flows may enter the grated concrete riser or flow over the emergency spillway located at the northwest corner of the pond.

#### System Description (South Wet Detention Basin):

The south wet detention basin was constructed in 1997 and traps 80% of sediment in runoff and maintain predevelopment downstream peak flows. The south pond includes a 7.5 foot deep main pool which will traps sediments in runoff. To do this, the pond size, water level and outlet structures must be maintained as specified in this Agreement (see Figures 1, 2 and 3).

The main basin receives runoff from a 5.45 acre drainage area which primarily includes the lands south of the building. During high rainfall or snow melt events, the water level will temporarily rise and slowly drain down to the elevation of the control structure. The water level is uncontrolled with no outlet to the pond.

#### Minimum Maintenance Requirements:

To ensure the proper long-term function of the storm water management practices described above, the following activities must be completed:

- 1. All outlet pipes must be checked monthly to ensure there is no blockage from floating debris or ice, especially the washed stone in front of the 3-inch orifice and the trash rack on the riser in the main basin. Any blockage must be removed immediately. The washed stone must be replaced when it becomes clogged.
- 2. Grass swales shall be preserved to allow free flowing of surface runoff in accordance with approved grading plans. No buildings or other structures are allowed in these areas. No grading or filling is allowed that may interrupt flows in any way.
- 3. Grass swales, inlets and outlets must be checked after heavy rains (minimum of annually) for signs of erosion. Any eroding areas must be repaired immediately to prevent premature sediment build-up in the downstream forebays or basin. Erosion matting is recommended for repairing grassed areas.
- 4. Invasive plant and animal species shall be managed in compliance with Wisconsin Administrative Code Chapter NR 40. This may require eradication of invasive species in some cases.
- 5. If the permanent pool falls below the safety shelf, a review shall be performed to determine whether the cause is liner leakage or an insufficient water budget. If the cause is leakage, the liner shall be repaired. Leakage due to muskrat burrows may require removal of the animals. If the permanent pool cannot be sustained at the design elevation, benching of the safety shelf may be necessary.

- 6. If floating algae or weed growth becomes a nuisance (decay odors, etc.), it must be removed from the basin or the forebay and deposited where it cannot drain back into the basin. Removal of the vegetation from the water reduces regrowth the following season (by harvesting the nutrients). Wetland vegetation must be maintained along the waters edge for safety and pollutant removal purposes.
- 7. When sediment in the forebays or the basin has accumulated to an elevation of three feet below the outlet elevation, it must be removed (see Exhibit D). All removed sediment must be placed in an appropriate upland disposal site and stabilized (grass cover) to prevent sediment from washing back into the basin. The forebays will likely need sediment removal first. Failure to remove sediment from the forebays will cause resuspension of previously trapped sediments and increase downstream deposition.
- 8. No grading or filling of the basin or berm other than for sediment removal is allowed, unless otherwise approved by the City of Waukesha.
- 9. Periodic mowing of the grass swales will encourage vigorous grass cover and allow better inspections for erosion. Waiting until after August 1 will avoid disturbing nesting wildlife. Mowing around the basin or the forebays may attract nuisance populations of geese to the property and is not necessary or recommended.
- 10. Any other repair or maintenance needed to ensure the continued function of the storm water practices or as ordered by the City of Waukesha under the provisions listed on page 1 of this Agreement.
- 11. The titleholder(s) or their designee must document all inspections as specified above. Documentation shall include as a minimum: (a) Inspectors Name, Address and Telephone Number, (b) Date of Inspections, (c) Condition Report of the Storm Water Management Practice, (d) Corrective Actions to be Taken and Time Frame for Completion, (e) Follow-up Documentation after Completion of the Maintenance Activities. All documentation is to be delivered to the attention of the City Engineer at the City of Waukesha Engineering Department on January 10th and July 10th each year.

The purpose of this addendum is to record verified "as-built" construction details, supporting design data and permit termination documentation for the storm water management practice(s) located on Outlot 1 of the Highland Preserve Subdivision, described as being all that part of the Southwest Quarter (SW ¼) of Section 4, Township 8N, Range 19E (Town of Lisbon) Waukesha County, Wisconsin. This document shall serve as an addendum to document #______, herein referred to as the "Maintenance Agreement". This addendum includes all of the following exhibits:

**Exhibit D:** <u>Design Summary</u> – contains a summary of key engineering calculations and other data used to design the wet detention basin. **Exhibit E:** <u>As-built Survey</u> – shows detailed "as-built" cross-section and plan view of the wet detention basin.

**Exhibit F**: <u>Engineering/Construction Verification</u> – provides verification from the project engineer that the design and construction of the wet detention basin complies with all applicable technical standards and Waukesha County ordinance requirements.

**Exhibit G:** <u>Storm Water Management & Erosion Control Permit</u> <u>Termination</u> – provides certification by the City of Waukesha that the Storm Water and Erosion Control Permit for the above noted site has been terminated.

Dated this  $8^{+h}$  day of July, 2019.

**Owner:** Dave Bahl, Sr., President

Dave Bahl, Sr.

(Owners Typed Name)

WAKC 1355-991-002 Parcel Identification Number(s) – (PIN)

#### Acknowledgements

Weld-All

2001 S. Prairie Avenue

Waukesha, WI 53189

State of Wisconsin; County of Waukesha Personally came before me this  $\frac{\partial \Psi}{\partial u}$  day of  $\frac{FEBRUARY}{July, 2019}$ , the above named Dave Bahl, Sr. to me known to be the person who executed the foregoing instrument and acknowledged the same.

Notary Public, Waukesha County, WI My commission expires: 04/03/2023

This document was drafted by: Craig Donze, PE PLS One Source Consulting 19435 W. Capitol Drive, Suite L05 Brookfield, WI 53045



#### Exhibit D Design Summary

Project Identifier:Weld-All ManufacturingProject Size:16.11 AcNo. of Lots:N/ANumber of Runoff Discharge Points:2Watershed (ultimate discharge):Fox (Illinois) RiverWatershed Area (including off-site runoff traveling through project area):16.11 Acres

<u>Watershed Data Summary</u>. The following table summarizes the watershed data used to determine peak flows and runoff volumes required to design the west wet detention basin using information obtained from the September 2008 Stormwater Calculation Summary prepared by Jahnke & Jahnke Associates, Inc. and obtained from the City of Waukesha Engineering archives.

G Dete Elemente	Subwatershed	A (West Pond)	Subwatershed B (South Pond)		
Summary Data Elements	Pre-develop	Post-develop	Pre-develop	Post-develop	
Watershed Areas (in acres) (see attached map)	5.23 acres	6.84 acres	5.45 acres	5.45 acres	
Average Watershed Slopes (%)	<2%	<2%	<2%%	<2%	
Land Uses (% of each) (see attached map)	100% cropland	Impervious (5.28 Ac) Landscape (1.56 Ac)	100% cropland	Impervious ( 5.02 Ac) Landscape (0.43 Ac)	
Runoff Curve Numbers	CN = 69	CN = 98	CN = 68	CN = 70	
Conveyance Systems Types	Grass Waterway	100% storm sewer	Grass Waterway	100% grass swale	
Summary of Average Conveyance System Data	Overland	Overland & Storm Sewer to West Pond	Overland	Overland to South Pond	
Time of Concentration (Tc) (see attached map & worksheets)	0.216 hrs.	.083 hrs.	.74 hrs.	.65 hrs.	
25% of 2-yr 24-hr post-dev runoff volume	N/A	N/A	N/A	N/A	
1-yr./24 hour Peak Flow	1.64 cfs	0.31 cfs	2.08 cfs	0.0 cfs	
<b>2-yr./24 hour Peak Flow</b> (see attached hydrographs)	2.49 cfs	0.67 cfs	3.08 cfs	0.0 cfs	
10-yr./24 hour Peak Flow	6.50 cfs	6.45 cfs	7.72 cfs	0.0 cfs	
100-yr./24 hour Peak Flow	17.25 cfs	15.87 cfs	20.81 cfs	0.4 cfs	

¢

### **Exhibit D (continued)**

Practice Design Summary. The following table summarizes the data used to design the west wet detention basin. The data contained herein was obtained from the September 2008 Stormwater Calculation Summary prepared by Jahnke & Jahnke Associates, Inc. and obtained from the City of Waukesha Engineering archives.

Design Element	Design Data
Site assessment data: (see attached maps)	
Contributing drainage area to basin (subwatershed A & B)	6.84 acres
Distance to nearest private well (including off-site wells)	> 100 feet
Distance to municipal well (including off-site wells)	> 1200 feet
Wellhead protection area involved?	No
Ground slope at site of proposed basin	1 to 2%
Any buried or overhead utilities in the area?	Yes
Proposed outfall conveyance system/discharge (w/ distances)	To existing City Storm Sewer
Any downstream roads or other structures? (describe)	Yes – driveway
Floodplain, shoreland or wetlands?	Wetlands >60' – Not hydraulically connected
Soil investigation data (see attached map & soil logs):	
Number of soil investigations completed	1 (in basin area)
Do elevations of test holes extend 3 ft. below proposed bottom?	Yes
Average soil texture at pond bottom elevation (USDA)	Sandy Loam
Distance from pond bottom to bedrock	> 5 feet
Distance from pond bottom to seasonal water table	Pond bottom 2 ft. below mottling $0-4$ feet
General basin design data (see attached detailed drawings):	· · · · · · · · · · · · · · · · · · ·
Permanent pool surface area	11,652 sf
Design permanent pool water surface elevation	36.00
Top of berm elevation (after settling) and width	elev. 41.25 / 12 feet wide
Length/width (dimensions/ratio)	~3:1
Safety shelf design (length, grade, max. depth)	10 ft. @ 10% slope
Ave. water depth (minus safety shelf/sediment)	5 ft. (in center)
Sediment forebay size & depth	.08 acres/5 feet
Sediment storage depth & design maintenance	2 ft. depth for forebay & pool 20 year maintenance schedule

De	esign Basin Inflow	, Outflow & S	torage Data	
	(see attached hydrog	raphs and detail	drawings)	
Inflow Peak/Volume	Maximum Outflow Rate	Max. Water Elevation	Storage Volume at Max. Elev. (above perm. pool)	Outflow Control Structures*
18.03 cfs (Post 1-yr./24 hr.)	0.31 cfs	38.36 ft.	0.774 acre feet	#1
20.44 cfs (Post 2-yr./24 hr. peak)	0.67 cfs	38.52 ft.	0.837 acre feet	#1 and #2
29.84 cfs (Post 10-yr./24 hr. peak)	6.45 cfs	38.93 ft.	1.006 acre feet	#1 and #2
50.04 cfs (Post 100-yr./24 hr. peak)	15.86 cfs	40.06 ft.	1.524 acre feet	#1 and #2
* $\#1 = 2 @ 2$ inch orific	of for water loval cont	al @ EL 2600 :.	a stand wina	

#1 = 2 @ 2 inch orifice for water level control @ EL. 36.00 in stand pipe.

#2 = 24" Standpipe @ EL. 38.45

**Practice Design Summary**. The following table summarizes the data used to design the south wet detention basin. The data contained herein was obtained from the September 2008 Stormwater Calculation Summary prepared by Jahnke & Jahnke Associates, Inc. and obtained from the City of Waukesha Engineering archives and updated to reflect the 2019 Office & Parking Lot Expansion.

Design Element	Design Data
Site assessment data: (see attached maps)	
Contributing drainage area to basin (subwatershed A & B)	5.45 acres
Distance to nearest private well (including off-site wells)	> 100 feet
Distance to municipal well (including off-site wells)	> 1200 feet
Wellhead protection area involved?	No
Ground slope at site of proposed basin	1 to 30%
Any buried or overhead utilities in the area?	Yes
Proposed outfall conveyance system/discharge (w/ distances)	None
Any downstream roads or other structures? (describe)	No
Floodplain, shoreland or wetlands?	Wetlands >50' – Not hydraulically connected
Soil investigation data (see attached map & soil logs):	
Number of soil investigations completed	n/a
Do elevations of test holes extend 3 ft. below proposed bottom?	n/a
Average soil texture at pond bottom elevation (USDA)	Sandy Loam
Distance from pond bottom to bedrock	> 5 feet
Distance from pond bottom to seasonal water table	0 feet
General basin design data (see attached detailed drawings):	
Permanent pool surface area	14,450 sf
Design permanent pool water surface elevation	29.23 (810.55)
Top of berm elevation (after settling) and width	elev. 38.70 / 12 feet wide
Length/width (dimensions/ratio)	~2:1
Safety shelf design (length, grade, max. depth)	10 ft. @ 10% slope
Ave, water depth (minus safety shelf/sediment)	11 ft. (in center)
Sediment forebay size & depth	n/a
Sediment storage depth & design maintenance	5 ft. depth for pool 20 year maintenance schedule

<b>Design Basin Inflow, Outflow &amp; Storage Data</b>											
(see attached hydrographs and detail drawings)											
Inflow Peak/Volume	Maximum Outflow Rate	Max. Water Elevation	Storage Volume at Max. Elev. (above perm. pool)	Outflow Control Structures*							
1.39 cfs (Post 1-yr./24 hr.)	0.21 cfs	811.60 ft.	16,576 cf	#1							
2.11 cfs (Post 2-yr./24 hr. peak)	0.23 cfs	811.83 ft.	20,481 cf	#1							
5.51 cfs (Post 10-yr./24 hr. peak)	0.30 cfs	812.69 ft.	35,794 cf	#1							
14.63 cfs (Post 100-yr./24 hr. peak)	0.41 cfs	814.44 ft.	71,542 cf	#1							

#1 = (2) 2 inch diameter orifice – flow line elev. @ 810.55

#2 = 10 foot wide earthen/grass emergency overflow spillway – flow line elev. @ 818.00

t

## Exhibit D (continued)

<u>Watershed Map</u>. The watershed map shown below was used to determine the postdevelopment data contained in this exhibit. The post-developed watershed areas are the same as the pre-development watershed areas for this project.



#### Exhibit D (continued)

<u>Watershed Map (continued)</u>. The watershed map shown below was used to determine the post-development data contained in this exhibit. The post-developed watershed areas are the same as the pre-development watershed areas for this project.



## **Exhibit E** As-built Survey for Wet Detention Basins

Project Identifier:	Weld-All Manufacturing
Storm water Practice:	Wet Detention Basins
Location of Practice:	2001 S. Prairie Avenue, Waukesha, WI:

#### **Figure 1 – South Detention Basin**

The wet detention basins depicted in Figure 1 is a reduced copy of the as-built plan.



#### Exhibit E (continued)

**Figure 1 – South Detention Basin** The wet detention basins depicted in Figure 1 is a reduced copy of the as-built plan.



Carlos and

#### Exhibit "F" Engineering/Construction Verification

For the above-referenced project and storm water management practices, this correspondence shall serve as verification that: 1) all site inspections outlined in approved inspection plans have been successfully completed; and 2) the storm water management practice design data presented in Exhibit D, and the "as-built" construction documentation presented in Exhibit E comply with all applicable state and local technical standards, in accordance with the City of Waukesha Storm Water Management and Erosion Control Ordinance.

1. Any variations from the originally approved construction plans are noted in Exhibit E. These variations are considered to be within the tolerances of standard construction techniques and do not affect the original design as presented in Exhibit D in any way.





## DEPARTMENT OF PUBLIC WORKS

Alex Damien, PE, Interim Director adamien@waukesha-wi.gov

#### CERTIFICATION

I, David Buechl, of the City of Waukesha, do hereby certify that the attached photos and maps are a true and correct copy of the original and if they are not legible or readable, a copy of the original is available at the City of Waukesha Engineering Division.

Date: March 2, 2022

Dans Breef

David Buechl, Engineer II City of Waukesha Engineering Department

 ENGINEERING DIVISION
 Alex Damien, PE
 Interim Director
 201 Delafield St.
 Waukesha, WI 53188
 262-524-3600  MUNICIPAL PARKING SERVICES Fred Ripley Parking Supervisor 241 South St. Waukesha, WI 53186 262-524-3622 Fax - 262-650-2573 □ STREETS DIVISION 300 Sentry Dr. Waukesha, WI 53186 262-524-3615 Fax – 262-524-3612

www.waukesha-wi.gov

CLEAN WATER PLANT Jeff Harenda Plant Manager 600 Sentry Dr. Waukesha, WI 53186 262-524-3625 Fax – 262-524-3632  WAUKESHA METRO TRANSIT
 Brian Engelking
 Transit Manager
 2311 Badger Dr.
 Waukesha, WI 53188
 262-524-3634
 Fax – 262-524-3646

#### JAHNKE & JAHNKE ASSOCIATES INC.

CONSULTANTS IN

#### ENGINEERING, PLANNING, SUBDIVISIONS AND SURVEYING

711 W. Moreland Blvd. Waukesha, WI 53188-2479

Telephone: 262-542-5797 Fax: 262-542-7698 E-Mail: mbirschbach@jahnkeandjahnke.com

 

 Stormwater Calculation Summary Plan Commission Submittal 9/30/2008
 RECEIVED

 Weldall Manufacturing
 OCT 0 3 2008

 Assumptions are based upon predeveloped area being classified as farmland (based upon 194), to the table of table 1995 air photos).

#### North/West Side

Stormwater management objectives will be met utilizing storm sewers for conveyance to a new wet detention pond. WDNR water quality requirements will be met in the proposed wet pond. Given that this is an industrial property with outdoor storage, infiltration will not be utilized.

The outlet of proposed wet pond will be the existing west pond. The existing pond will remain unchanged. The stormwater will ultimately discharge to the existing City storm sewer system through existing conveyance systems located along the south side of the property.

The results of the stormwater analysis is shown below.

	Predeveloped	Postdeveloped
Area	5.23 ac	6.8 ac
CN	69	96
Peak Flow 1 yr.	1.64 cfs	0.31 cfs
Peak Flow 2 yr.	2.49 cfs	0.67 cfs
Peak Flow 10 yr.	6.50 cfs	6.45 cfs
Peak Flow 100 yr.	17.25 cfs	15.87 cfs

#### South Side

The existing pond was evaluated for the estimated runoff. Current runoff from the south side of the site results from the existing connection of an inlet to the City storm sewer system. This connection will be removed and the site storm sewer will drain into the existing South Pond. There is currently no outlet from this pond. Per DNR request, a new outlet will be installed at elevation 36.

	Predeveloped	Postdeveloped
Area	5.45 ac	5.45 ac
CN	69	85
Peak Flow 1 yr.	2.08 cfs	0.0 cfs
Peak Flow 2 yr.	3.08 cfs	0.0 cfs
Peak Flow 10 yr.	7.72 cfs	0.0 cfs
Peak Flow 100 yr.	20.81 cfs	0.0 cfs

The summary sheets are attached.







÷	EXISTING SECTION MONUMENT
0	EXISTING IRON PIPE FOUND
¤	EXISTING LIGHT POLE
А	EXISTING HYDRANT
*	EXISTING WATER VALVE UNERGROUND
0	EXISTING SANITARY MANHOLE
ē	EXISTING GAS METER
8	EXISTING CABLE TV PEDESTAL
٠	EDUSTING HOUSE VALVE
7	EXISTING POWER POLE
0	EXISTING ELECTRIC PEDESTAL
r.	EXISTING MAILBOX
	EXISTING SIGN
8	EXISTING TELEPHONE PEDESTAL
⊜	EXISTING CATCH BASIN ROUND
ø	EXISTING WOOD FOST
Ħ	EXISTING WOOD POST
<b>4</b> 10	EXISTING FLOODLIGHT
Ş	EXISTING FLACPOLE
5	EXISTING ELECTRIC METER
ø	EXISTING TELEGRAPH POLE
•	EXISTING BOLLARD
	EXISTING DECKNOOUS TREE
	EXISTING CONFEROUS TREE

G	EXISTING UNDERGROUND CAS MAIN
	EXISTING UNDERGROUND ELECTRIC
. <del></del> .	EXISTING UNDERGROUND TELEPHONE
xx	EXISTING FENCE LINE
-Transminer-	EXISTING RETAINING WALL
FFE	EXISTING FINISH FLOOR ELEVATION

ALL E LEVATIONS ARE AT CITY OF WALKE (ADD /80.56 TO CONVERT TO USGS DATU

REFERENCE BERCHMARKS: ELEV: 40.43 "OPEN" HYD E, SIDE PRAIRIE AT S, ENTRAN ELEV: 44.12 "OPEN" HYD E, SIDE PRAIRIE AT SIEMANS M

ED: SEPTEMBER 30, 2008							
PROPOS RE PART OF NW & SW CITY OF WAUKESH	ED ( 2: - \ 1/4 HA, \	SRADING MELDALL SECTION MAUKESH	PLAN N 15, IA COL	T6N	, R19 7. WI.	9E	the second second
JAHNKE & JA PLANNERS & 711 W. MOREL TEL.Ho. (262) 54	HNK * PROF NO BU 2-579)	E ASSO ESSIONAL EN MOWAUKESH 7 FAX (262)	CIATE INCERS AML53188 542-769	55 . 18	INC.		UE. E.\ DO
1 = 40		DATE: JU	E 28, 20	Ċė .			- 3
I BY: N.S. CHECKED BY: M	.B.	FILE NO .:	WAUKE:	SHA 7	93		tu
NO .: WALKESKA 174	JOB:	\$4743	SUFFE	4	0F	~	- 5



ł

ŝ

٠

Job File: P:\Pondpack\s-4743 Weldall\FOST WITH NORTH LEG.PPW Rain Dir: P:\Pondpack\s-4743 Weldall\

валаргаятсянская в мала в м 1915 Т.Т.Т.В. вала в со в в мала в

Project Date: 8/19/2008
Project Engineer: J&J
Project Title: Watershed
Project Comments:

•#1

.

,

North /west

Table of Contents

Table of Contents

Watershed..... Master Network Summary ..... 1.01 NORTH SEWER..... TC Calcs ..... 2.01 PRE BLDG..... To Calcs ..... 2.03 WEST..... To Calcs ..... 2.05 PRE BLDG..... Runoff CN-Area ..... 3.02 WEST..... Runoff CN-Area ..... 3.03 POND 10..... Vol: Flanimeter ..... 4.01

Outlet 1..... Outlet Input Data ..... 5.01

Jahnke & Jahnke Associates Time: 11:00 AM

S/M: B21C011070CB PondPack Ver. 8.0067

Date: 9/30/2008

Jahnke & Jahnke Associates Time: 11:00 AM

Date: 9/30/2008

S/N: B21C011070CB FondPack Ver. 8.0067

Page 1.01

TYPe.... Master Network Summary Name.... Watershed File.... P:\Pondpack\s-4743 Weldall\PoST WITH NONTH LEG.PPW

MASTER DESIGN STORM SUMMARY

Network Storm Collection: SEWRFC 2000

		RNF ID		TypeII 24hr	TVDEII 24hr	TVDEII 24hr	TypeII 24hr	
	Rainfall	Type	************	Synthetic Curve	Synthetic Curve	Synthetic Curve	Synthetic Curve	
Total	Depth	in i		2.5700	3.6200	5.8800	2.3000	
		teturn Event		2-Yr	10-XI	100-Yr	1-71	

# MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(+Node=Outfail) +Node=Diversion)) (Trun= HYG Truncation: Blank=None; L=Left, R=Rt; L%=LefteRt)

Max Pond Storage ac-ft											
MAX WSEL Ít											
Qpeak cfs	17.04	39.65	15.18	.67	6.45	15.87	.31	2.49	6.50	17.25	1.64
Qpeak hrs	11.9000	0006.11	11.9000	13.8500	12.1000	12.I000	14.5000	12.0500	12.0500	12.0500	12,0500
Trun											
BYG Vol ac-ft	1.029	2.481	116.	1.213	1.795	3.065	1.066	198,	.447	1,141	.145
Return Event	n ç	100	ч	2	10	100	7	[7]	10	100	-
Type	AREA	AREA	AREA	JCT	JCT	JCT	t Jo	JCT	E,	fu b	ţ
Node ID	NORTH SEWER NORTH SEWER	NORTH SEWER	NORTH SEWER	*OUT.WEST.POST	*OUT.WEST.POST	*OUT, WEST, POST	+OUT.WEST, POST	*OUT.WEST.PRE	*OUT.WEST.PRE	+OUT.WEST.PRE	*OUT.WEST.PRE

Type.... Master Network Summary Name.... Patershed File.... P:\Pondpack\s-4743 Meldall\POST WITH NORTH LEG.PPW

...

f

Page 1.02

,

\$

# MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(+Node-Outfall; +Node-Diversion;) (Trun= HYG Truncation: Blank-None; L=Left; R=Rt; LR=Left&Rt)

Max Pond Storage ac-ft					758.	1.006	1.524	774								
Max WSEL ft					38.52	38.93	40.06	38,36								
Qpeak cfs		4F-04	50.04	16.03	.67	6.45	15.87	16.	2.49	6.50	17.25	1.64	3.40	5.60	10.40	2.85
Qpeak hrs		0006 11	0006.11	11.9000	13.8500	12.1000	12.1000	14.5000	12,0500	12.0500	12.0500	12.0500	11.9000	11.9000	0006'TI	0006.11
Trun	ł													-		
HYG Vol ac-ft	710 L	662 L	3.070	I.069	1.213	1.795	3.065	1.066	198.	.447	1,141	.145	188.	015.	.589	.158
Return Event	6	13	100	ч	N	10	100	-	N	10	100	٦	7	OT	100	<b>,</b>
Type	CINU C	DOND	DND	<b>DND4</b>	GNO4	TOND	GNOA	POND	AREA	AREA	AREA	AREA	AREA	AREA	AREA	AREA
	1N	INI	N	IN	TUO	TUO	100	TUO								
lode ID	or gno	OIL GNO	OI GNO	OT GNO	01 GNO	OL CNO	01 GNO	01 GNO	SGIE BLDG	RE BLDG	RE BLDG	SULE BLDG	TST	TST	TST	TSH
4		- 44	544	H4	щ	14	-	щ	<u>р</u> ,	щ	5.hi	щ	3	2	æ	2

S/N: B21C011070CB PondPack Ver. 8.0057

Jahnke & Jahnke Associates Time: 11:00 AM

• •

S/N: B21C011070CB Pondpack Ver. 8.0067

Date: 9/30/2008

Jahnke & Jahnke Associates Time: 11:00 AM

Date: 9/30/2008

-.. Page 2.01

File.... P:/Pondpack/s-4743 Weldall/POST WITH NORTH LEG.PPW Type.... TC Calcs Name.... NORTH SEWER

TIME OF CONCENTRATION CALCULATOR

Segment #1: Tc: TR-55 Sheet

Mannings n .0130 Hydraulic Length 300.00 ft 2yr, 24hr P 2,7000 in Slope .020000 fL/ft

1.38 ft/sec Avg.velocity Segment #1 Time: .0605 hrs 

Total TC: .0605 hrs

Calculated Tc < Min.Tc: Use Minimum Tc... Use Tc - ...0833 hrs

Type.... TC Calcs Name.... NORTH SEWER

File.... P:\Pondpack\s-4743 Weldall\POST WITH NORTH LEG.PPW

sť.

ŧ

Page 2.02

,

Ļ

TC Equations used...

---- SCS TR-55 Sheet Flow тетатискостинательностичностичностичностичностичностичностичностичностичностичностично

TC = (.007 * ((n * LE) **0.8)) / ((P**.5) * (SE**.4))

Where: Tc = Time of concentration, hrs n = Mannings u Lf = Flow length, ft P = 2yr, 24hr Rain depth, inches Sf = Slope, 4

S/N: B21C011070CB PondPack Ver. 8.0067

Date: 9/30/2008 Jahnke & Jahnke Associates Time: 11:00 AM

S/N: BZLC011070CB FondPack Ver. 8.0067

Date: 9/30/2008

Jahnke & Jahnke Associates Time: 11:00 AM

Page 2.03			4 8 8 8 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8			.1581 hrs				.0576 hrs	еттеризкование .2158 hrs
C Calcs RE BLDG	o:\Pondpack\s-4743 Weldall\PoST WITH NORTH LEG.PPW	CONCENTRATION CALCULATOR	1	n	âty .53 ft/sec	Segment #1 Time:	2: TC: TR-55 Shallow	:Length 560.00 ft .028000 ft/ft	dty 2.70 ft/sec	Segnent #2 Time:	Total Tc:
Type1 Name1	File 1	TIME OF (		Mannings Hydraulic 2yr, 24hy Slope	Avg.Veloc		Segment ‡	Hydraulic Slope Unpaved	Avg.Veloc	L	

CS DG dinaskis_41423 Majdaj11 biocr arro Niomr 150 bbe		Sheet Flow ====================================	c = Time of concentration, hrs = Mannings n f = Zive length, ft = Ziv. Zahr Rain depth, inches f = Slope, %	Shallow Concentrated Flow seasons seasons and seasons
Type TC Calcs Name PRE BLDG File D. Dendmarkle.d.	Te Equations used	SCS TR-55 Sheet Flo TC = (.007 * ((n *	Where: Tc = Time of the formula in the main of the formula is a structure of the structure	SCS TR-55 Shallow (

۲

*

a,

..

-

.

Unpaved surface: V = 16.1345 * (Sf**0.5)

Tc = (Lf / V) / (3600sec/hr) Paved surface: V = 20.3282 * (Sf**0.5)

Where: V = Velocity, fr/sec sf = slope, fr/ft TC = Time of concentration, hrs Lf = Flow length, ft

Jahnke & Jahnke Associates Time: 11:00 AM

Date: 9/30/2008

S/N: B21C011070CB PondPack Ver. 8.0067

Date: 9/30/2008 Jahnke & Jahnke Associates Time: 11:00 AM

S/N: B21C011070CB PondPack Ver. 8,0067

TC Calcs	WEST
Type	Name

,-

~

Fage 2.05

# File.... P:\Pondpack\s-4743 Weldall\PoST WITH NORTH LEG.PPW

TIME OF CONCENTRATION CALCULATOR

# Segment #1: Tc: User Defined

Segment #1 Time: .0833 hrs

Total To: .0833 hrs

Type.... Tc Calcs Name.... WEST

File.... P:/Pondpack/s-4743 Weldall/POST WITH WORTH LEG.PPW

e'

Page 2.06

•

•

TC Equations used... 

Tc - Value entered by user

Where: Tc = Time of concentration

S/N: BZIC011070CB PondPack Ver. 8.0067

Jahnke & Jahnke Associates Time: 11:00 AM

S/N: B21C011070CB FondPack Ver. 8.0057

Date: 9/30/2008

Date: 9/30/2008

Jahnke & Jahnke Associates Time: 11:00 AM
CN-Area	SEWER
Runoff	NORTH
ad	ne
Ę	Nai

,£

Page 3.01

File.... P:\Pondpack\s-4743 Weldall\POST WITH NORTH LEG.PPW

RUNOFF CURVE NUMBER DATA

	Impervious Adjustment Adjusted *C *UC CM 
)                   	Area acres 2,280 1.377 1.620
	N) 86 86 86
- # # # ? T # # # # # ?   #   #   # # # # # # # # #	Soil/Surface Description 

COMPOSITE AREA & WEIGHTED CN ---- 5.277 98.00 (98)

File.... P:\Pondpack\s-4743 Weldall\POST WITH NORTH LEG. PPW Type.... Runoff CN-Area Name.... PRE BLDG

ø

Page 3.02

٠

,

RUNOFF CURVE NUMBER DATA

ervious	ustment Adjusted	FUC CN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	69.00
 dur	Area Adj	acres *C		5.230
		CN		69
		Soil/Surface Description		crops type b soil

COMPOSITE AREA & MEIGHTED CN ---> 5.230 69.00 (69)

Date: 9/30/2008

Jahnke & Jahnke Associates Time: 11:00 AM

S/N: B21C011070CB FondPack Ver. 8.0067

S/N: BZIC011070CB FondPack Ver. 8.0067

Date: 9/30/2008

.

Jahnke & Jahnke Associates Time: 11:00 AM

Type.... Runoff CN-Area Name.... WEST

.

Page 3.03

## File.... P:\Pondpack\s-4743 Weldall\POST WITH NORTH LEG, PPW

RUNOFF CURVE NUMBER DATA

			Impervious		
		Area	Adjustment	Adjusted	
Soil/Surface Description	õ	acres	*C *DC	õ	
	1 1 1				
drive	86 86	.290		00.88	
pond	5	.340		98.00	
roof	96	.103		98.00	
Landscape	61	.433		61.00	
future parking	9.6	.400		98.00	

COMPOSITE AREA & WEIGHTED CN ---> 1.566 87.77 [88]

Type.... Vol: Planimeter Name.... POND 10

•

Page 4.01

÷

.

File.... P:/Pondpack/s-4743 Weldall/POST WITH NORTH LEG. PPW

### POND VOLUME CALCULATIONS

### Planimeter scale: 1.00 ft/in

Volume Sum (ac-ft)	000.	662,	.638	1.038	1.495	2.011	2.583
Volume (ac-ft)	. 000	.293	.345	.400	.457	.516	.572
A1+A2+sgr (A1*A2) (acres)	.0000	.8782	1.0355	1.1998	1.3711	1.5494	1.7154
Area (acres)	.2675	.3187	.3723	.4282	.4865	.5471	.5963
Flanimeter (sq.in)	11652.000	13884.000	16217.000	18653.000	21190.000	23830.000	26000.000
Elevation (ft)	36.00	37.00	38.00	39.00	40.00	41.00	42,00

### FOND VOLUME EQUATIONS

* Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume ** (1/3) * (EL2-EL1) * (Areal + Area2 + sg.rt.(Areal+Area2))

where: ELL, EL2 = Lower and upper elevations of the increment Areal Areas areas computed for EL1, EL2, respectively vely volume. - Incremental volume between EL1 and EL2

Jahnke & Jahnke Associates Time: 11:00 AM

Date: 9/30/2008

S/N: B21C011070CB PondPack Ver. 8.0067

Jahnke & Jahnke Associates Time: 11:00 AM

S/N: S21C011070CB PondPack Ver, 8,0067

Data	
Input	
OULLEE	Outlet
Type	Name

File.... P:\Pondpack\s-4743 Weldall\POST WITH NORTH LEG.PPW

REQUESTED POND WS BLEVATIONS:

Min. Elev. = 36.00 ft Increment = .10 ft Max. Elev. = 42.00 ft

---> Forward Flow Only (Upstream to DnStream) ---- Reverse Flow Only (DnStream to Upstream) ----> Forward and Reverse Both Allowed

E2, ft 42.000 42.000 OULFAJI E1, EL ---- C1 38.450 ---- C1 36.450 ---- TW 35.850 Structure No. Stand Pipe Stand Pipe Stand Tuber Stand Tuber Stand Tuber Structure Structure Structure Stannel

Page 5.01

Type.... Outlet Input Data Name.... Outlet 1

.

Page 5.02

.

.

File.... P: \Pondpack \s-4743 Weldall \PoST WITH NORTH LEG. PPW

OUTLET STRUCTURE INPUT DATA

a.45 ft 3.415 ft 3.415 st.ft 5.28 ft 5.28 ft 5.28 ft 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000 11111 Structure ID structure Type stand Fipe to C Openings 14 1 frowert Elev. 2,0000 ft Diameter 2,0000 ft Orifice Area 1,1416 gt,1 Orifice Coeff 5,28 ft weir Coeff 6,28 ft weir Coeff 9,000 X, Reverged 1,000 X, Reverged 1,000 Di ft-Open 1,000 C Manning n 0,000 fp

Structure ID • 02 Erructure Type • Orifice-Circular 4 of Openings = 2 1 north Elev. • 36.00 ft Diameter • .600 orifice Coef. • .600

Date: 9/30/2008

Jahnke & Jahnke Associates Time: 11:00 AM

S/N: B21C011070CB PondPack Ver. 8.0067

Date: 9/30/2008

Jahnke & Jahnke Associates Time: 11:00 AM

S/N: B21C011070CB PondPack Ver. 8.0067

Type.... Outlet Input Data Name.... Outlet 1

•**

Fage 5.03

File.... P:\Pondpack\s-4743 Weldall\POST WITH NORTH LEG.PPW OUTLET STRUCTURE INPUT DATA

.0130 (forward entrance loss) .5000 (forward entrance loss) .018213 (per ft of full flow) 1.0000 (reverse entrance loss) .001 +/- ft In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T4 T2... At T2 Elev = 37.58 ft ---> Flow = 7.58 cfs At T2 Elev = 37.80 ft ---> Flow = 8.65 cfs Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev. 2.00098 2.0009 .03980 .6700 1.155 1.302 1.302 INLET CONTROL DATA... Equation for main aniet control mage inlet control mage inlet control control ca Thet control va Thet control va Thet control va state (HW/D) a state state (HW/D) a state state value v

Structure ID = TW SFTUP, DS Channel structure Type = TW SFTUP, DS Channel PREE OUTFALL CONDITIONS SPECIFIED

Appendix A

Index of Starting Page Numbers for ID Names

4

----- N -----North Sewer... 2.01, 3.01

POND 10... 4.01 PRE BLDG... 2.03, 3.02 outlet 1... 5.01

---- W -----Watershed... 1.01 WEST... 2.05, 3.03

A-1

e

Date: 9/30/2008

S/N: B21C011070CB PondPack Ver. 8.0057

S/N: B21C011070CB PondPack Ver. 8.0057

Jahnke & Jahnke Associates Time: 11:00 AM

Date: 9/30/2008

Jahnke & Jahnke Associates Time: 11:00 AM





÷

,

Job File: P:\Pondpack\s-4743 Weldall\SOUTHEAST FOST DEV.PPW Rain Dir: P:\Pondpack\s-4743 Weldall\

Project Date: 6/19/2008 Project Sngineer: Michael Birschbach Project Title: Watershed Project Comments:

,

Table of Contents

1

1

South

### Table of Contents

-rel

**************************************
Watershed Master Network Summary 1.01
**************************************
.PRE DEV TC Calcs 2.01
SOUTH POST TC Calcs 2.03
CALCULAR SNOLLENGER CALCULAR STREAM
.PRS DEV Runoff CN-Area 3.01
SOUTH POST Runoff CN-Area 3.02
EX.SOUTH.POND Vol; Planimeter 4.01
AUTO OUTLESS OUTLESS STRUCTURES ANALYSISSION
Outlet 1 Outlet Input Data 5.01

S/N: B21C011070CB FondPack Ver. 8.0067

Date: 9/30/2008

Jahnke & Jahnke Associates Time: 10:55 AM

S/N: B21C011070CB PondPack Ver. 8.0067

Date: 9/30/2008 Jahnke & Jahnke Associates Time: 10:56 AM

Page 1.01

### MASTER DESIGN STORM SUMMARY

Type.... Master Network summary Name.... matershed File.... P:\Pondpack\s-4743 Weldall\SOUTHEAST POST DEV.PPW

~

## Network Storm Collection: SEWRPC 2000

LI TU	Typeri 24hr Typeri 24hr Typeri 24hr Typeri 24hr
Rainfall Type	Synthetic Curve Synthetic Curve Synthetic Curve Synthetic Curve
Total Depth in	2.5700 3.6200 5.8800 2.3000
Return Event	2-2 20-1 1-1-1 27-01 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1-1 1-1 1-1-1 1-1 1-1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1

### MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node-Outfall, +Node-Diversion;) (Trun- HYG Truncation: Blank-None; 1-Left, R-Rt; LR-Leftbat)

Node ID	Түре	Return Event	HYG Vol ac-ft	Trun	Qpeak hrs	Opeak cfs	Max WSEL Ét	Max Pond Storage ac-ft
. PRE DEV . PRE DEV	AREA	6 P	206	:	12.0000	80°E		
. PRE DEV . PRE DEV	AREA AREA	100	1.150		11.9500	20.81		
EX. SOUTH, PONDIN EX. SOUTH, PONDIN EX. SOUTH, PONDIN	CINO4 CINO4 CINO4	100 100	.561 .963 1,903		11,9500 11,9000 11,9000	10,12 17,43		
EX.SOUTH.PONDIN EX.SOUTH.PONDOUT	dNO4	н х	.464		11.9500	6 C C		1
EX.SOUTH.FONDOUT EX.SOUTH PONDOUT	DND4	10	000		7,0500		31.78	.963
EX.SOUTH. PONDOUT	POND	2 4	000.		9.3000	00.	33.74 30.54	1.902

...

# Type... Master Network Summary Name... Atersbeck/s-4743 weldall/SOUTHEAST DOST DEV.PFW file....

### MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;) (Trun- HYG Truncation: Blank=None; L=Left; R-Rt; LR-LefteRt)

Max WSEL Pond Storage ft ac-ft											
Qpeak cfs	00.	00.	.00	3.08	7.72	20.81	2.08	10.12	17.43	34.04	96.39
Qpeak hrs	0200	0200	.0500	12.0000	12.0000	11.9500	12.0000	11.9500	11.9000	11.9000	11.9500
Trun	1										
HYG Vol ac-ft	000.	000	.000	, 206	.466	1.190	.151	.561	.963	1.903	.464
Return Event	1 1 1	100	r-i	13	10	100	н	2	10	100	Ч
Type	i și	LDF.	Į,	HOP P	10P	HOD D	LOP	AREA	AREA	AREA	AREA
Node ID	*OUT.SOUTH.POST *OUT SOUTH POST	*OUT.SOUTH.POST	*OUT.SOUTH.FOST	*OUT . SOUTH . PRE	*OUT.SOUTH.PRE	*OUT.SOUTH.PRE	+OUT.SOUTH.PRE	TSO4 HTUOS	SOUTH POST	SOUTH POST	SOUTH POST

S/N: BZIC011070CB PondPack Ver. 8.0067

Date: 9/30/2008

Jahnke & Jahnke Associates Time: 10:56 AM

,

Date: 9/30/2008

Jahnke & Jahnke Associates Time: 10:55 AM

S/N: B21C011070CB PondPack Ver. 0.0067

Page 1.02

٠

۲

type Tc Calcs Name PRE DSV		Page 2.01	Type To Calos Nago To Calos
Pile P:\Pondpack\s-4743 Weldall\SOUTHEAS	WT POST DEV. PPW		reare
TIME OF CONSENTRATION CALCULATOR			TC Equations used
			SCS TR-55 Sheet Flow
Segment #1; Tc: TR-55 Sheet			Tc = (.007 + {in * Lf}+*0.8}) / (ip**.5) + {Sf**.4})
Mannings n .0230 Mydraulic Length 3000 ft 2Yr. 24hr P 2.5700 in Sippe .023000 ft/ft			Where: Tc = Time of concentration, hrs M = Manings m Lf = Flow length, ft P = 4yr, 2dhr Rain depth, inches Sf = 3000, $k$
Avg.Velocity .90 ft/sec			
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	gment #1 Time:	.0926 hrs	are SCS TR-55 Shallow Concentrated Flow zewerseess.
Segment #2: Tc: TR-55 Shallow			Umpaved surface: V = 16.1345 * (SE*+0.5)
Hydraulic Length 280,00 ft Slope ,028600 ft/ft			Zaved surface: v = 20.3282 * (5f*+0.5)
Unpaved			Tc = (Lf / V) / (3600 sec/hr)
Avg.Velocity 2.73 ft/sec			Where: V = Velocity, ft/sec Sf = Slone, ft/ft
Seg	gment #2 Time:	.0285 hrs	TC = Time of concentration, hrs If = Filew lensth, ft

Jahnke & Jahnke Associates Time: 10:56 AM

Jahnke & Jahnke Associates Time: 10:55 AM

S/N: B21C011070CB PondPack Ver. 8.0067

Date: 9/30/2008

S/N: B21C011070CB PondPack Ver. 8.0067

Date: 9/30/2008

TC = Time of concentration, hrs Lf = Flow length, ft

жататануулыкаанын кананын кананын кананын кананын тороо тороо тороо тороо тороо кананын кананын кананын кананы канан кананы кананы

•

.

,

~

•

•	

Page 2.03

## File.... P:\Pondpack\s-4743 Weldall\SOUTHEAST POST DEV.PPW

Type.... TC Calcs Name.... SOUTH POST

TIME OF CONCENTRATION CALCULATOR

### Segment #1: Tc: TR-55 Sheet

	ft	, ri	ft/ft
.0250	145.00	2.5700	023000
	.c Length	ц Ъ	•
Mannings	Hydrauli	2yr, 24h	Slope

.73 ft/sec Avg.velocity

Segment #1 Time: . 0553 hrs

Segment #2: TC: TR-55 Sheet

.0250 90.00 ft 2.5700 in .100000 ft/ft Mannings n Hydraulic Length 2yr, 24hr P Slope .1

1.19 ft/sec Avg.velocity Segment #2 Time: .0210 hrs 

Total Tc: .0763 hrs

Calculated Tc < Min.Tc: Use Minimum Tc... Use Tc = .0833 hrs

Type... TC Calcs Name... SOUTH POST

-

Page 2.04

,

.

File.... P:\Pondpack/s-4743 Weldall\SoUTHEAST POST DEV.PPW

TC Equations used...

ении SCS TR-55 Sheet Flow влавиетсяниятся вособраниется вособраниется в SCS TR-55 Sheet Flow

TC = (.007 * ((n * Lf)**0.8)) / ((P**.5) * (Sf**.4))

Where: Tc - Time of concentration, hts n - Mannings n Lf = Flow Hength, ft P = 2yr, 24hr Rain depth, inches sf = Slope, *

Date: 9/30/2008

S/N: B21C011070CB PondPack Ver. 8,0067

S/N: B21C011070CB PondPack Ver. 8,0067

Jahnke & Jahnke Associates Time: 10:56 AM

Jahnke & Jahnke Associates Time: 10:55 AM Date: 9/30/2008

5	
•	

Page 3.01

٢

.

~

•

File.... P:\Pondpack\s-4743 Weldall\SOUTHEAST POST DEV.PPW Type.... Runoff CN-Area Name.... PRE DEV

RUNOFF CURVE NUMBER DATA

					,
Soll/Surface Description	ð	Area acres	Impervious Adjustment %C %DC	Adjusted CN	
Crops	. 69	5,450		100	

COMPOSITE AREA & MEIGHTED CN ---- 5.450 (69)

Name SOUTH POST		,	,
File P:\Pondpack\s-4743 Weldall\S	UTHEAST PO	ST DEV.PPW	
RUNOFF CURVE NUMBER DATA		****	
Soil/Surface Description	Area	Impervious Adjustment &C &UC	Adjusted
Paved parking lots, roofs, driveway 9	2.76		99.00
Paved parking lots, roofs, driveway 9	96.	0	99,90
Good condition; grass cover > 75% 6	. 1.97	0	61,00
Pond 9	.33	0	98,00
COMPOSITE APPA 5 WETCHTEN NA COMPOSITE	5 45		07 69 80

S/N: B21C011070CB PondPack Ver. 8,0067

Jahnke & Jahnke Associates Time: 10;56 AM

Date: 9/30/2008

\$/N: B21C011070CB FondPack Ver. 8.0067

Jahnke k Jahnke Associates Time: 10:56 AM

Date: 9/30/2008

Type.... vol: Flanimeter Name.... EX.SOUTH.POND

File.... P:\Pondpack\s-4743 Weldall\SOUTHEAST POST DEV.PPW

### Flanimeter scale: 1.00 ft/in FOND VOLUME CALCULATIONS

Elevation Planimeter Area Al+A2+sgr(Al+A2) Volume Volume Sum (ft) (sq.in) (acres) (acres) (ac-ft) (ac-ft)

000	255	544	1.060	1.514	2.054	2.660	205.6	010 4	4.815	
.000	266	975	416	. 455	553	.606	642	717	797.	
.0000	1.0353	1.1334	1.2479	1.3636	1.6184	1.8195	1.9268	2.1500	2.3896	
.3317	.3587	.3972	.4350	.4744	.6073	. 6057	.6795	. 7544	.8394	
14449.000	15624.000	17304.000	18948.000	20664.000	26454.000	26384.000	29601.000	32862.000	36564.000	
29.23	30.00	31.00	32.00	33.00	34,00	35.00	36.00	37,00	38.00	

### POND VOLUME EQUATIONS

* Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume * (1/3) * (EL2-EL1) * (Areal * Area2 * sg.rt.(Areal*Area2))

where: Eil, E12 - Lower and upper elevations of the increment Areal, Area2 - Areas computed for E11, E12, respectively Volume - Incremental volume between E11 and E12

Fage 4.01

Type.... Outlet Input Data Name.... Outlet 1

۰.

Page 5.01

e

File.... P:\Pondpack\s-4743 Weldall\SOUTHEAST POST DEV.PPW

REQUESTED POND WS ELEVATIONS:

Min. Elev. 29.23 ft Increment - .10 ft Max. Elev. 38.00 ft

---> Forward Flow Only [UpStream to DnStream] ---- Reverse Flow Only (DnStream to UpStream) ---> Forward and Reverse Both Allowed

Structure No. Outfall El, ft E2, ft Culvetr-Circular 01 ----> TW 36.000 38.000 TW SFUP, DS Channel

Date: 9/30/2008

S/N: B2LC011070CB FondPack Ver. 8,0067

Jahnke & Jahnke Associates Time: 10:56 AM

Date: 9/30/2008

S/N: B21C011070CB PondPack Ver. 8.0067

Jahnke & Jehnke Associates Time: 10:56 AM

•

File.... P:\Pondpack\s-4743 Weldall\SoUTHEAST POST DEV.PPW Type.... Outlet Input Data Name.... Outlet 1

OUTLET STRUCTURE INPUT DAIA

No. Barrels		
Barrel Diameter	- 1.0000	źt.
Upstream Invert	- 36.00	11 t
Dustream Invert	a 35.85	ft
Horiz Length	- 15.00	ft
Barrel Length	- 15.00	ft
Barrel Slope	0100	ft/ft
OUTLET CONTROL DAT		
Mannings n	. 0130	
Ke	. 0000	(forward entrance los
Kb	031274	(ner ft of full flow)
Kr.	0000	(Teverse entrance los
HW Convergence	100	+/- ft
INLET CONTROL DATA.		
Equation form .		
Inlet Control X	.0078	
Inlet Control M .	2.0000	
Inlet Control c	03790	
Inlet Control Y .	. 6900	
T1 ratio (HW/D)	1,130	
T2 ratio (HW/D) .	1.291	
slope Factor	500	

Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev.

In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T \$ 72... AT TERV = 37.13 ft ---> Flow = 2.75 cfs At T2 Elev = 37.29 ft ---> Flow = 3.14 cfs

Page 5.02

Type.... Outlet Imput Data Name.... Outlet 1

÷

.

File.... P:\Pondpack/s-4743 Weldall/SOUTHEAST POST DEV.PPW

OUTLET STRUCTURE INPUT DATA

Structure ID - TW SETUP, DS Channel Structure Type - TW SETUP, DS Channel FREE OUTFALL CONDITIONS SPECIFIED

CONVERGENCE FOLERANCES... Maxium frechtions= 30 Min. TW tolerance = 01 ft Min. W tolerance = 01 ft Min. W tolerance = 01 ft Max. W tolerance = 01 ft Min. Q tolerance = 10 cfs Max. Q tolerance = 10 cfs

Date: 9/30/2008

Jahnke & Jahnke Associates Time: 10:56 AM

S/N: B21C011070CB PondPack Ver. 8.0067

Jahnke & Jahnke Associates Time: 10:55 AM

S/N: B21C011070CB PondPack Ver. 8.0067

Date: 9/30/2008

Page 5.03

Y

 $\mathbf{O}$ 

τ.

-

sţ.

۲

•

Appendix A

Index of Starting Page Numbers for ID Names

A-1

.PRE DEV... 2.01, 3.01

EX.SOUTH.POND... 4.01

outlet 1... 5.01

----- 5 -----SOUTH POST... 2.03, 3.02 ----- W -----Watershed... 1.01

Date: 9/30/2008

Jahnke & Jahnke Associates Time: 10:56 AM

S/N: B21C011070CB PondPack Ver. 8.0067

### **JAHNKE & JAHNKE ASSOCIATES INC.**

Consultants in Engineering, Planning, Subdivisions, and Surveying

### STORMWATER MANAGEMENT PLAN

Weldall Manufacturing 2001 S. Prairie Avenue Part of the NW ¼ & SW 1/4 of Section 15, T6N, R19E City of Waukesha, Waukesha County, Wisconsin Jahnke & Jahnke Project No. S-4743

> Prepared for Weldall Manufacturing

Prepared by: Michael P. Birschbach, P.E. Project Engineer Jahnke & Jahnke Associates Inc.

October 14, 2008



Telephone: (262) 542-5797 Fax: (262) 542-7698

### WELDALL MANUFACTURING STORMWATER PLAN NARRATIVE

This Stormwater Management plan was prepared for the Weldall Manufacturing property which is a Tier 2 Industrial Manufacturing Facility located at 2001 S. Prairie Avenue in the City of Waukesha. The property is in the NW ¼ and SW ¼ of Section 15, Township 6 North, Range 19 East, Waukesha County. The site is located within the Upper Fox River (Illinois) watershed of the Fox River (Illinois) Basin. The total property is 16.1 acres in size.

The site is currently occupied by a 92,000 sq. ft. industrial building with associated parking and outdoor storage areas. The facility was constructed in 1997. The site is generally sloping down to the South and West towards ponds which were constructed as part of the property development in 1997. The proposed project will consist of the construction of a 96,000 sq. ft. addition, new drive, and up to 1.6 acres of new parking and outdoor storage.

Stormwater Management on this site is achieved by two distinct sub-watersheds (labeled South and West) at this property. All of the existing building stormwater runoff and 0.69 ac. of the addition roof top runoff will be directed to the existing south pond (South sub-watershed). A new wet pond will be constructed on the west side of the site to provide treatment of 1.5 acres of runoff from the proposed addition and ultimately 4.5 acres of paved area. All of the post-developed drainage from the northern portion of the site will be routed into the new wet pond (West sub-watershed). The stormwater released from the site will discharge to the City of Waukesha storm sewer which drains to the Fox River.

A review of the USGS Soil Conservation Maps for the area of the site indicates silt loam and Fox loam to be the prominent soil types at the property. These soils are classified as type B soil. To analyze the hydraulic analysis the post-developed information is based upon the proposed ultimate build-out of the site which includes outdoor storage on the north leg of the site and a parking lot on the west side of the existing building. The pre-developed rates are based upon the site being used for Row crops (pre 1997). The pre-development watershed areas and time of concentration are shown on the Pre-developed Drainage map. Using the calculated input data, the flows were analyzed using Haestad Methods Pondpack Version 8.0 computer program.

As allowed by WDNR guidelines, the runoff from the northern adjacent property is being routed around the proposed wet pond and will discharge to the existing pond located on the West side of the site. The runoff onto the northern leg of the subject site from the eastern portion of this northern adjacent property will be allowed to pond on the Northern leg of the subject site (as it currently does). This area is currently internally drained and will remain as such after the storage areas on the subject property are constructed. While the storm water storage area will be modified to some degree, the available storm water storage volume will remain unchanged.

1

The stormwater management requirements for the City of Waukesha and the Wisconsin DNR are as follows:

- 1. Peak Discharge.
  - a. For all flow passing through the stormwater management facilities, contain the postdeveloped 2, 10 & 100 year, 24 hour storm event peak flow rates to less than or equal to the 2, 10 & 100 year pre-developed 24 hour storm event peak flow rate. This matches the Wis.DNR standard.
- 2. Total Suspended Solids. Reduce the total suspended solids load by 80% for new impervious areas and 40% for existing based on the average annual as compared to no runoff management controls.
- 3. Infiltration. Due to the industrial classification of the site, no infiltration is required.

The post-development conditions were analyzed using Haestad Methods Pondpack Version 8.0 computer program.

To address water quality of the runoff, a wet pond is being proposed at the western portion of the subject site. The drainage from the new parking, storage and portions of the new addition area on the subject site is collected by storm sewers which are connected to this wet pond. To provide maximum protection of the proposed structure, the storm sewer is designed to accommodate the 100 year storm. The outlet from the stormwater facility (Wet Pond) flows into the existing man made pond (West Pond) on the site.

The reduction of the peak flow rate from the outlet acre structure is designed to meet the flow requirements of the City and WDNR.

### NR 151 Requirements

The proposed storm water management and erosion plan satisfies the current Wisconsin Department of Natural Resources (WDNR) Chapter NR 151 Runoff Management Regulations and WDNR Conservation Practice Standard (WDNR CPS). Specifically those discussed in NR 151.11 and NR 151.12. The proposed plan includes best management erosion control measures (NR 151.11) during construction to achieve the following:

- The installation of a diversion swale to direct water from northern adjacent property around the proposed graded areas.
- To the maximum extent practicable, a reduction of 80% of the sediment load carried in runoff, on an average annual basis, with culvert inlet protection, silt fence, the use of the proposed wet pond as a temporary sediment basin, and prompt disturbed area restoration.
- Prevent tracking of sediment from the construction site onto roads and other paved surfaces with tracking pads.
- Two, 2" orifices in the wet pond outlet will be utilized to limit flows from site during construction to provide water quality in accordance with WDNR CPS 1063.

The post construction storm water management plan satisfies the requirements identified in NR 151.12 and WDNR CPS by accomplishing the following:

- Installing and maintaining wet detention pond to reduce the maximum extent practicable, the total suspended solids load by a minimum of 66%, based on an average annual rainfall, as compared to no runoff management controls (NR 151.12(5)(a)1). The 66% removal requirement is based upon a weighted average of 80% removal for new impervious areas and 40% removal for existing impervious areas.
- After the site is vegetated, the 2, 2" orifices in the wet pond outlet will meet water quality requirements of WDNR CPS 1001.
- The PondPack model was utilized to determine the peak flow rate for the pre-developed and post-developed site conditions. The 2-year, 10-year, and 100-year, 24-hour design storm peak discharge rates for the post-developed conditions are less than the similar design storm for the pre-developed condition (NR 151.12(5)(b) 1).

The Western sub-watershed meets the requirements. There will be no release from the existing pond in Southern sub-watershed, as such this area exceeds the requirements.

The Summary Sheets and Supporting PondPack model calculations are included within this report. Associated maps and additional calculations are also included.

### JAHNKE & JAHNKE ASSOCIATES INC.

CONSULTANTS IN

### ENGINEERING, PLANNING, SUBDIVISIONS AND SURVEYING

711 W. Moreland Blvd. Waukesha, WI 53188-2479 Telephone: 262-542-5797 Fax: 262-542-7698 E-Mail: mbirschbach@jahnkeandjahnke.com

Stormwater Calculation Summary Plan Commission Submittal 9/30/2008

### Weldall Manufacturing

Assumptions are based upon predeveloped area being classified as farmland (based upon 1941 to 1995 air photos).

### North/West Side

Stormwater management objectives will be met utilizing storm sewers for conveyance to a new wet detention pond. WDNR water quality requirements will be met in the proposed wet pond. Given that this is an industrial property with outdoor storage, infiltration will not be utilized.

The outlet of proposed wet pond will be the existing west pond. The existing pond will remain unchanged. The stormwater will ultimately discharge to the existing City storm sewer system through existing conveyance systems located along the south side of the property.

The results of the stormwater analysis is shown below.

	Predeveloped	<u>Postdeveloped</u>
Area	5.23 ac	6.8 ac
CN	69	96
Peak Flow 1 yr.	1.64 cfs	0.31 cfs
Peak Flow 2 yr.	2.49 cfs	0.67 cfs
Peak Flow 10 yr.	6.50 cfs	6.45 cfs
Peak Flow 100 yr.	17.25 cfs	15.87 cfs

### South Side

The existing pond was evaluated for the estimated runoff. Current runoff from the south side of the site results from the existing connection of an inlet to the City storm sewer system. This connection will be removed and the site storm sewer will drain into the existing South Pond. There is currently no outlet from this pond. Per DNR request, a new outlet will be installed at elevation 36.

	Predeveloped	Postdeveloped
Area	5.45 ac	5.45 ac
CN	69	85
Peak Flow 1 yr.	2.08 cfs	0.0 cfs
Peak Flow 2 yr.	3.08 cfs	0.0 cfs
Peak Flow 10 yr.	7.72 cfs	0.0 cfs
Peak Flow 100 yr.	20.81 cfs	0.0 cfs

The summary sheets are attached.

	_	DATA S	SUMMARY SHEI Weldall Mi City of Waukes	ET ST anufac tha, W	<b>ORMWATER N</b> sturing Building , aukesha Count	<b>AANAGEMEN1</b> Addition 3, Wisconsin	· PLAN		
^o roject Size: <u>12.25 acres</u>			Project T	ype: _	Industrial Cons	struction			
Number of Runoff Discharge Points:	2					Watershed (ı	Iltimate discharge):	Fox River	
Natershed Area (including off-site	runoff traveling	through	n project area):	U	5.84 acres				
ublic Land Survey Location:	-1	Part of	the NW 1/4 & SV	V 1/4 (	of Sec. 15,T6N,	R19E			
WEST POND AREA	Pre Bldg		West		North S	ewer	Out West Pre	Out West Post	
Summary Data Elements	Pre-develo	a	Post-develo		Post-de	velop	Pre-develop	Post-develop	
Watershed Areas (in acres)	5.23		1.57		5.2	8	5.23	6.84	
Average Watershed Slopes (%)	2% - 4%		2% - 4%		2% - 1	4%			
	Land Use	Acres	Land Use	Acres	Land Use	Acres			
	crops, b	5.23	drive	0.29	parking storage	2.28			
Land Uses			pond	0.34	roof	1.38			
			roof	0.10	north storage	1.62		* 	
			lawn	0.43					
			future parking	0.4	•				
	Arras	NO	Acres	Z	Acres	NC			
	5.23	500	0.29	5 8	2.28	86			
			0.34	86	1.38	86			
			0.10	86	1.62	98			
Runoff Curve Numbers			0.43	61					
			0.40	86					
	Not 360 87 /	л 00 00	Not 137 45 /	1 57	Not 51715 /	5.28			
		69	CN= 8		CN= 0	98			
			Overland to V	/et	Overland to Sto	orm Sewer to			
Conveyance System Types	Overland	73	Pond to West F	puo	Wet Pond to	West Pond			
Time of Concentration (Tc) (hrs)	0.22		0.08		0.0	8			
1-year/24 hour Runoff Volume ac-ft	0.15		0.16		0.9	t-	Target Rate	Calculated Rate	
2-yr/24 Hour Peak Flow (cfs)	2.49		3.40		17.0	04	2.49	0.61	
10-yr/24 Hour Peak Flow (cfs)	6.50		5.60		24.2	24	6.50	6.45	
100-yr/24 Hour Peak Flow (cfs)	17.25		10.40		39.6	35	17.25	15.87	
T-V \S4749\S-4743Data summary sheet									

PARTICIPAL PROPERTY AND ADDRESS

Round (Ritamativ

di turana wattu

Je Wennergegenberg

ystanikasi ini kuup

450%) (saturation)

And the second s

series and the series of the s

Survey and s

and a minimum

nt/t/0/nt/tn/::/:

2 Project Size: 12.25 acres Number of Runoff Discharge Points:

Weldall Manufacturing Building Addition City of Waukesha, Waukesha County, Wisconsin Project Type: Industrial Construction

DATA SUMMARY SHEET STORMWATER MANAGEMENT PLAN

, . .

g----GWGEAD-----

provinstantinikkos.

gdWwe3002/cfc

1022-southerstern

. .

2000 Filosoma Barra

adaan Kendara Joo

.

AND VIEW (1997)

Watershed (ultimate discharge): Fox River

5.45 acres Watershed Area (including off-site runoff traveling through project area):

Public Land Survey Location:

Part of the NW 1/4 & SW 1/4 of Sec. 15,T6N, R19E

SOUTH POND AREA	Pre dev	South post	Out South Pre	Out South Post	
Summary Data Elements	Pre-develop	Post-develop	Pre-develop	Post-develop	
Watershed Areas (in acres)	5.45	5.45	5.45	5.45	
Average Watershed Slopes (%)	2% - 4%	2% - 4%			
	Land Use Acres	Land Use   Acres			3 2 2
	crops, b 5.45	roof 2.76			1 1 1000000000000000000000000000000000
Land Uses		parking 0.39			
	LLEE 99777777777777777777777777777777777	lawn 1.97			
		pond [ 0.33			
		L L 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	Acres CN	Acres CN			
	5.45 69	2.76 98			
		0.39 98			
		1.97 61			44 74 14
Runoff Curve Numbers		0.33 98			
	• • • • • • • • • • • • • • • • • • •				
		"`````````````````````````````````````			
	Net 376.05 / 5.45	Net 461.21 / 5.45			
	CN= 69	CN= 85			
Conveyance System Types	Overland	Overland to South Pond			
Time of Concentration (Tc) (hrs)	0.12	0.08			
1-year/24 hour Runoff Volume ac-ft	0.15	0.46	Target Rate	Calculated Rate	
2-yr/24 Hour Peak Flow (cfs)	3.08	10.12	3.08	0.00	
10-yr/24 Hour Peak Flow (cfs)	7.72	17.43	7.72	0.00	
100-yr/24 Hour Peak Flow (cfs)	20.81	34.04	20.81	0.00	

•

T:\...\S4743\S-4743Data summary sheet

### WELDALL MANUFACTURING WATER QUALITY CALCULATIONS

### WEST OUT

### Weighted Average of Pollutant Removal

2.11 ac	Existing Impervious @ 40%	0.844
<u>3.96 ac</u>	New Impervious @ 80%	<u>3.168</u>
6.07 ac	Total Proposed Impervious	4.01 / 6.07= 66% Removal Required

### Percentage of Drainage Area Required

as Wet Basin Permanent Pool:

Land Use: Industrial

% of Drainage Area = 2.8%

WET POND - POST CONSTRUCTION

<u>Drainage Area:</u>	Min. permanent pool required
6.8 ac.	8,293 sq. ft.

Wet Pond :

### per WDNR CPS 1001

Q_{out} (cfs) = (0.0000191 (fps) x SA (sf)) / 1.2 (safety factor)

Q_{out} = Peak discharge rate from the pond during 1-yr, 24-hr design storm in cfs 0.0000191 = Settling velocity of 3 micron particle in ft/sec (80%) Per WDNR CPS 1001 0.0000737 = Settling velocity of 6 micron particle in ft/sec (60%) Per WDNR CPS 1001 SA = Surface area of the permanent pool in sq ft

SA = 11,652 sq ft (perm. pool @ elev. = 36.00)

Q_{out} 80%:(0.0000191 x 11,652) / 1.2 = 0.19 cfs

Q_{out} 60%:(0.0000737 x 11,652) / 1.2 = 0.71 cfs

Q_{out} from PondPack = 0.31 cfs for 2 @ 2" orifices in wet pond outlet = 75% Removal * Water quality requirement met

### WET POND/ Sediment Basin -DURING CONSTRUCTION

Predominant Soil Type at exposed subgrade during construction are Type 2 based upon the soil boring report

 $Q_{out}$  (cfs) = (0.000073 (fps) x SA (sf)) / 1.2 (safety factor)

Qout = Peak discharge rate from the pond during 1-yr, 24-hr design storm in cfs 0.000073 = Settling velocity of 5 to 20 micron particle in ft/sec Per WDNR CPS 1064 SA = Surface area of the permanent pool in sq ft

SA = 11,652 sq ft (perm. pool @ elev. = 36.00)

Q_{out} target: (0.000073 x 11,652) / 1.2 = 0.85 cfs

Q_{out} from PondPack = 0.31 cfs for 2 @ 2" orifices in wet pond outlet

* Water quality requirement met

per WDNR CPS 1064

permanent pool provided

11,652 sq. ft.

### DATA SUMMARY SHEET FOR WET POND DESIGN Weldall Manufacturing, Waukesha WI

Design Element	Design Data
Site assessment data: (see attached maps)	
Contributing drainage area to basin (subwatershed)	6.8 acres
Distance to nearest private well (including off-site wells)	>100 feet
Distance to municipal well (including off-site wells)	>1200 feet
Wellhead protection area involved?	No
Ground slope at site of proposed basin	1.0 to 2.0%
Any buried or overhead utilities in the area?	yes- south of pond
Proposed outfall conveyance system/discharge (w/distances)	to existing West Pond to City Storm
Any downstream roads or other structures? (describe)	yes- driveway
Floodplain, shoreland or wetlands?	Wetland over 60' south of pond-Not
<b>A</b>	hydraulically connected
Soil investigation data (see attached map & soil logs):	
Number of soil investigations completed	5
Do elevations of test holes extend 3ft. below proposed bottom?	Yes
Average soil texture at pond bottom elevation (USDA)	Sandy loam, Fine sand
Infiltration rate at pond bottom and method of analysis	site exempt per
Distance from pond bottom to bedrock	>5 feet
Distance from pond bottom to seasonal water table	0 to 4 feet
General basin design data (see attached detailed drawings):	
Infiltration area	exempt
Infiltration elevation	exempt
Top of berm elevation (after settling) and width	Elev. 41.25/ 12' wide
Volume below high water level (2 yr. storm)	0.837ac-ft
Time to infiltrate stored water	na
Wet forebay size & depth	.08 ac /5 ft.
Wet forebay maintenance	20 year cleaning frequency
Wet Pond Inflow, Outflow &	Storage Data
(see attached hydrographs and	detail drawings)

(see attached hydrographs and detail drawings)					
Inflow Peak/Volume	Maximum	Max. Water	Storage Volume	Outflow	
	Outflow Rate	Elevation	at Max. Elev.	Control	
			(above perm. pool)	Structures*	
(1-yr./24 hr.) 18.03 cfs/1.069 ac. ft.	0.31	38.36	0.774 acre feet	#1	
(2-yr./24 hr. peak) 20.44 cfs/1.217 ac. ft.	0.67	38.52	0.837 acre feet	#1, #2	
(10-yr./24 hr. peak) 29.84 cfs/1.799 ac. ft.	6.45	38.93	1.006 acre feet	#1, #2	
(100-yr./24 hr. peak) 50.04 cfs/3.070 ac. ft	15.87	40.06	1.524 acre feet	#1, #2	

*The controlling elements are summarized below (See attached detail drawing of outlet structure):

#1 = 2 @ 2 inch orifice at elev. @ EL. 36.0 in Stand pipe to 18" RCP

#2 = 2' dia RCP Standpipe @ EL. 38.45 to 18' dia RCP

T:\...\S4743\S-4743Data summary sheet

### DATA SUMMARY SHEET FOR EXISTING SOUTH POND Weldall Manufacturing, Waukesha WI

Design Element	Design Data
Site assessment data: (see attached maps)	
Contributing drainage area to basin (subwatershed)	5.45 acres
Distance to nearest private well (including off-site wells)	>100 feet
Distance to municipal well (including off-site wells)	>1200 feet
Wellhead protection area involved?	No
Ground slope at site of proposed basin	1 to 30%
Any buried or overhead utilities in the area?	Storm Sewer south of pond
Proposed outfall conveyance system/discharge (w/distances)	None
Any downstream roads or other structures? (describe)	no
Floodplain, shoreland or wetlands?	Wetland over 50' south of pond- Not
-	hydraulically connected
Soil investigation data (see attached map & soil logs):	
Number of soil investigations completed	n/a
Do elevations of test holes extend 3ft. below proposed bottom?	n/a
Average soil texture at pond bottom elevation (USDA) n/a	
Infiltration rate at pond bottom and method of analysis	high-historical information
Distance from pond bottom to bedrock	>5 feet
Distance from pond bottom to seasonal water table	0 feet
General basin design data (see attached detailed drawings):	
Infiltration area	n/a
Infiltration elevation	n/a
Top of berm elevation (after settling) and width	Elev. 38.7
Volume below high water level (2 yr. storm)	0.561 ac-ft
Time to infiltrate stored water	n/a
Wet forebay size & depth	n/a
Pond maintenance	Inspect yearly maintain as needed
Pond Inflow, Outflow & St	orage Data
(see attached hydrographs and e	detail drawings)
Inflow Dock/Volume Maximum Max V	Vater   Storage Volume   Outflow

(See anatelieu ny ur ographio and dotan dra mago)					
Inflow Peak/Volume	Maximum	Max. Water	Storage Volume	Outflow	
	Outflow Rate	Elevation	at Max. Elev.	Control	
			(above perm. pool)	Structures*	
(1-yr./24 hr.)	0	30.54	0.464acre feet	No	
8.39cfs/ 0.464 ac. ft.					
(2-yr./24 hr. peak)	0	30.79	0.561 acre feet	No	
10.12 cfs/ 0.561 ac. ft.		05,115			
(10-yr./24 hr. peak)	<u>^</u>	31.78	0.963 acre feet	No	
17.43 cfs/ 0.963 ac. ft.	0	51,75			
(100-yr./24 hr. peak)	······	33 74	1.902 acre feet	No	
34.04.cfs/ 1.903.ac. ft	0	55.14			

34.04 cfs/ 1.903 ac. ft. *The controlling elements are summarized below (See attached detail drawing of outlet structure):

#1 = 1' dia RCP @ EL. 36.0 to Storm Sewer

#2 = earthen weir at el 38.7

T:\...\S4743\S-4743Data summary sheet

1	SITE LOCATION MAP SOILS MAP
2	PRE-DEVELOPED SITE • WATERSHED MAP
3	SOUTH PRE & POST DEVELOPED CALCULATIONS POST DEVELOPED WATERSHED MAP
4	NORTH/WEST • PRE & POST DEVELOPED CALCULATIONS • POST DEVELOPED WATERSHED MAP
5	STORM SEWER CALCULATIONS
6	SLAMM ANAYLSIS
7	SOIL BORING REPORT
8	
AVERY"	600022

U

условийсь 1,3,555 п. And the Application and the second With BANG ADAM Community of the ( Ministra Galifor yini unu ya printing and the second , المراجع من المراجع الم المراجع and a second sec e construction of the second sec 

terrent of the second se



.

. .





gu/103404020200 p+10x6x846600 And Address of the Ad 2 yrusiddaamta provening and Street and the second • fino compatiba professional and a second A contract of the second A MARINE MARINE , 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 Attack of the second (manual second






















![](_page_111_Figure_0.jpeg)

![](_page_112_Picture_0.jpeg)

![](_page_113_Picture_0.jpeg)

![](_page_114_Figure_0.jpeg)

Jahnke & Jahnke Associates Tíme: 10:56 AM

Date: 9/30/2008

, A		idall\southEAST POST DEV.PPW
Master Network Summary	Watershed	P:\Pondpack\s-4743 Wel
Type	Name	File

Page 1.01

### MASTER DESIGN STORM SUMMARY

Network Storm Collection: SEWRPC 2000

i - Ba	TypeII 24hr	TypeII 24hr	TypeII 24hr	TypeII 24hr
Rainfall Ture	Synthetic Curve	Synthetic Curve	Synthetic Curve	Synthetic Curve
Total Depth	2.5700	3.6200	5,8800.	2.3000
Return Event	 $2 - Y \Gamma$	10-Yr	100-Yr	1-Yr

			1.5		۰.
- 2	1				23
					22
. 1					
۰.	Δ.	۰.			4
	۰.				
- 5	۰.				
	٩.		۰.		
					۰.
		۰.			
				х.	
	۰.				1
2			1		
			-	6.	
			ւ	1	
	• •		Ċ	£ 1	
	-	4	ē	С.	
	1	;	-		۰.
	ρ	э.	+	5.1	۰.
	*	2	¢	Ŀ.,	
	3	٤.	2	5.1	12
	-	Ξ.	_		
	≝	۰.		. 1	
	Ŧ	J.	£	1	
	U	5	2	la Ì	
	_		-	η.	1.0
		2	1		
	*	۰.			۰.
	<u>α</u>	4		٥.	۰.
	6	ς.	õ	č -	
	X	٤.	a		
	æ	•	-		
	E+	۰.	σ	١.	
	Ľ		5		
	E	2	÷.	۰.	
	۴		**	۰.	
		2	ı.		
	57	Ξ.	-		
	2	•		۰.	
	÷	•	н		
	U	<b>}</b>	-		
	÷.	۰.			
	12		m	. 1	
	-		5		
			υ		
			ú		
			-		
۰.					
		1			
	٠.				

(*Node=Outfall: +Node=Diversion;) (Trun= HYG Truncation: Blank=None; Leleft; R=Rth, LR=Left&th)

Max MSEL Pond Storage ft ac-ft		30.79 .561	31.78 .963	33.74 1.902	30 54 464
Qpeak cfs	а 10 10 10 10 10 10 10 10 10 10	00.	00.	00.	00
Qpeak hrs	12.0000 11.9500 12.0000 12.0000 11.9500 11.9500 11.9500	8,8000	7.0500	4.9000	9.3000
Trun					
HYG Vol ac-ft	1.190 1.190 1.190 1.190 1.961 1.963 1.963	000.	.000	.000	000.
Return Event	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	10	100	-
Type	AREA AREA AREA AREA AREA POND POND	DOND	DOND	DOND	DOND
Node ID	NICKOA, HTUON, XA	EX.SOUTH.PONDOUT	EX. SOUTH. PONDOUT	EX. SOUTH. PONDOUT	EX. SOUTH, PONDOUT

Jahnke & Jahnke Associates Time: 10:56 AM

S/N: B2ICO11070CB FondPack Ver. 8.0057

Date: 9/30/2008

S/N: B21C011070CB PondPack Ver. 8.0067

Date: 9/30/2008

Jahnke & Jahnke Associates Time: 10:56 AM

Max WSEL Pond Storage ft ac-ft 

3.08 7.72 20.61 2.08

 Return
 HTO Vol
 Opeak

 Type Event
 ac.tt
 trun
 hrs

 JCT
 2
 000
 05500

 JCT
 10
 11500
 0500

 JCT
 1
 1150
 11.9500

 JCT
 1
 1.51
 11.9500

 JCT
 1
 1.951
 11.9500

 AREA
 1
 1.953
 11.9500

 AREA
 1
 1.953
 11.9500

*OUT, SOUTH, PRE *OUT, SOUTH, PRE +OUT, SOUTH, PRE *OUT, SOUTH, PRE

TSO4 HTUOS TSO4 HTUOS TSO4 HTUOS

Tool Supervision States and State

10.12 17.43 34.04 8.39

(Trun= HYG Truncation: Blank-None, L=Left, R=Rt, LR=Left&Rt)

MASTER NETWORX SUMMARY SCS Unit Hydrograph Method

Type.... Master Network Summary Name.... ate:shedita: Pile.... P.\Pondpack/s-4743 weldall\SOUTHEAST POST DEV.PPW

Page 1.02

Page 2.01 Page To Calcs Page	NAMME PRE DEV File P:\POndpack\s-4743 Weldall\SOUTHBAST POST DEV.PPW PW	TC Buations used	259 TR-55 Sheet Flow ####################################	Where: Tc = Time of concentration, hrs n = Manuings n Lf = Flow length. (1) P = 2377 34hr Rain depth, inches Sf = 2009e, *	er 005 hr	Unpaved. surface: V a. 16. 1349 * (Steino. S)	$V = 20.3322 \times [554:0.5]$ $T = 20.3322 \times [554:0.5]$	Note and the second
Type Tc Calcs	Name PRE DEV File P:\Pondpack\s-4743 Weldall\SOUTHEAST POST DI	TIME OF CONCENTRATION CALCULATOR	Sequent #1. To: TP-55 Sheet	Mannings n .0230 Hydraulic Length 300.00 ft 2yr, 24hr P 2.5700 ft/ft	Avg.Velocity	Segment #2: TC: TR=5 Shallow	Hydraulic Jength 280.00 ft Slope	Avg.velocity

. TC CALCS SOUTH POST	Page 2.03	TYPE TC CALCS NAME SOUTH POST		Page 2.
P:\Pondpack\s~4743 Weldall\SOUTHEAST	WIT DEV. PAN	File P:\Pondpack\s	s-4743 Weldall\SOUTHEAST POST DEV.PPW	
OF CONCRNTRATION CALCULATION		TC Equations used		
nt #1. (To. TR-55 Sheet) ( 1999)		a=ss SCS TR-55 Sheet. TC = (,007 + ((I	Flow	8 N H Q C U U U U U U U U U U U U U U U U U U
ngs n .0250 ullc Length 145.00 ft 24hr P 2.5700 in		Where: TC + Tim 10 + 10 11 + 10 12 + 210 13 + 212 14 + 210	me.of.concentration, hrs mings n ov.length, ft tr. Aahr Rain depth, inches oore 's	
elocity .73 ft/sec	meilt #1 Time: 0553 hrs			
at to TR-55 Sheet				
nga n				
elocity 1.13 ft/sec	maoti #3 Trino. An1.0 bra			
	Total To: .0753 hrs Calendared To: Min. To: Use To = .0833 hrs Use To = .0833 hrs			
2011070CB Jahnke & Jahnke Asso Ver. 9.9057 Time: 10:56 A	ociates AM	S/N: B21C01070CB PondPack Ver. 8.0067	Jahnke & Jahnke Associates Time: 10:56 AM	9/30/20

![](_page_118_Figure_0.jpeg)

![](_page_119_Figure_0.jpeg)

Type Outlet Input Data Rame Outlet 1	Page 5.02 Name.	Outlet Input Data
File P: \Pondpack\s-4743 Weldall\SoUTHEAST POST DEV. FPW	File	P:\Pondpack\8-4743
OUTLET STRUCTURE INPUT DATA		OUTLET STRUCT
structure ID = 01 structure Type = Culvert-Circular		Structure ID Structure Typ
No. Burrels		FREE OUTFALL CONVERGENCE T

		ÉC				(forward entrance loss)	(per ft of full flow)	(reverse entrance loss)	+/- ft									
35.85	15.00		00010		0010	0000	+121E0.	0000	100		г	0078	2.0000	06760.	6900	1.130	1.291	500
istream Invert	vriz. Length =	trel Length =	trrel Slope -	JILET CONTROL DATA.	a n sprinn	3	F		Convergence	<b>MLET CONTROL DATA</b>	juation form	alet Control K	ulet Control M =	llet Control c'·.±'	llet Control Y	L ratio (HW/D) =	<pre>% ratio (HW/D) =</pre>	ope Factor =

Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev.

In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 37.13 ft ---> Flow = 2.75 cfs At T2 Elev = 37.29 ft ---> Flow = 3.14 cfs

Date: 9/30/2008

Jahnke & Jahnke Associates Time: 10:56 AM

S/N: B21C011070CB PondPack Ver. 8.0067

File.... F:\Pondpack\s-4743 Weldall\SOUTHEAST POST DEV.PFW

OUTLET STRUCTURE INPUT DATA

Structure ID = TW SITUP, DS Channel Structure Type = TW SITUP, DS Channel FEER OUTFALL CONDITIONS SPECIFIED

•	- - 			Ļ	L	L.	fa	É6		
	ICES .	0E	3 TO	- 07	01 f	1 TO .	10.0	10.0		
	CE TOLERAN	terations-	olerance, ≖	olerance =	olerance =	alerance =	olerance =	olerance		
	CONVERGEN	Maximum I	Mini, TW to	Max. TW C	MIN. HW L	Max. HW C	Min. Q tu	Max. 0 to		
ŧ,	'n,	1	1		÷.,	ੇ	Ń		à	Ì

Page 5.03

S/N: BZICOII070CB PondPack Ver. 8.0067

Date: 9/30/2008 Jahnke & Jahnke Associates Time; 10:55 AM

![](_page_121_Picture_0.jpeg)

![](_page_122_Figure_0.jpeg)

![](_page_123_Figure_0.jpeg)

711 W. MORELAND BLVD.-WAUKESHA,WI.53188 TEL.No.(262) 542-5797 FAX (262) 542-7698 DATE: JUNE 26, 2008 SCALE: 1'' = 40'DRAWN BY: N.S. CHECKED BY: M.B. FILE NO .: WAUKESHA 793 BOOK NO .: WAUKESHA 174 JOB: S4743 SHEET 6 OF 9

![](_page_124_Picture_0.jpeg)

![](_page_125_Picture_0.jpeg)

![](_page_126_Picture_0.jpeg)

North Inest

Date: 9/30/2008 2.05 ************************** CN CARCOLATIONS ****************** ************************ LC CUTUINS ******************** ********************* OUTLET STRUCTURES ********************* 3.01 PRE BLDG ..... TC Calcs ...... 2.03 Watershed ...... Master Network Summary ..... 1.01 2.01 PRE BLDG. ..... Runoff CN-Area ...... 3.02 POND 10 Vol: Planimeter Outlet 1. ..... Outlet Input Date ...... 5,01 NORTH SEWER NORTH SEWER. .... Runoff CN-Area Jahnke & Jahnke Associates Time: 11:00 AM Table of Contents S/N: B21C011070CB PondPack Ver. 8.0067 Table of Contents Date: 9/30/2009 Job File; P:\Fondpack\s-4743 Weldall\POST WITH NORTH LEG. PFW Rain Dir: P:\Fondpack\s-4743 Weldall\ Jahnke & Jahnke Associates Time: 11:00 AM Project Date: 8/19/2008 Project Engineer: J&J Project Title: Matershed Project Comments: S/N: B21C011070CB PondPack Ver. 8.0067

Page 1.01 Type... Maater Network Summary Name...Nateshedock/s-4743 Weldall\POST WITH NORTH IEG.PPW File....

### MASTER DESIGN STORM SUMMARY

Network Storm Collection: SEWRFC 2000

		D		hr	hr	hг	Цг	
		NP II		24]	24]	24]	24]	
		R	*	TypeII	TVDeII	TypeII	TypeII	
	m			Curve	Curve	Curve	Curve	
	infal	Type		etic	etic.	etic	etic	
	Ra			Synth	Synch	Synth	synth	
rotal	Jepth	1 u f		.5700	.6200	.8800	.3000	
			i	N	'n	'n	rv.	
		Event		-Yr	- ۲۲	-Yr	л. Т.Т	
		eturn	1 1 1 1	Ň	10	100	Ä	

### MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall, *Node=Diversion;)
(Trun* HYG Truncation: Blank-None; L=Left, R=Rt; IR=LefteRt)

		Return	HYG Vol		Qpeak	Qpeak	Max WSEL	Max Pond Storage
Node ID	TYDe	Event	acrft	Trun	hrs	cfs	£t	ac-ft
	1		1 1 1 3 8 8 8 4 1	ł				
NORTH SEWER	AREA	N	1.029		11.9000	17.04		
NORTH SEWER	AREA	10	1.489		11.9000	24.24		
NORTH SEWER	AREA	100	2.481		0006.II	39.65		
NORTH SEWER	AREA	г	ILC.		11.9000	15.18		
*OUT.WEST.POST	JCT	CI	1.213		13.8500	.67		
*OUT, WEST, POST	тор	10	1.795		12.1000	6.45		
*OUT.WEST, POST	JOD	100	3.065		12.1000	15.87		
*OUT.WEST.POST	1CT	m	1.066		14.5000	.3I		
+OUT.WEST.FRE	JCT	0	,198		12.0500	2.49		
*OUT.WEST.PRE	τCT	10	.447		12.0500	6.50		
+OUT.WEST.PRE	JCT	100	1.141		12.0500	17.25		
+OUT . WEST . FRE	JCT	٦,	.145		12.0500	1,6 <b>4</b>		

Type.... Maater Network Summary Name.... Ristershed Pile... Ristoryackys-4743.Meldall/POST WITH NORTH LEG.29M

Page 1.02

## MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(Trune HYG Truncation: Blank-None, L-Left, R=Rt, LR=LefteRt)

			Return	HYG Vol	Qpeak	Opeak	Max WSEL	Max Pond Storag
Node ID		Type	Event	ac-fE	Trun brs	CIS	L) Li	ac-ft
DI GNOA	IN	DOND	2	1.217	0005.11	20.44		
POND 10	IN	POND	10	1.799	11.9000	29.84		
POND 10	ñ	DND	100	3.070	11.9000	50.04		
POND 10	NI	DNDA	1	1.069	11.9000	18.03	· · . · · ·	
POND 10	TUO	POND	2	1.213	13.8500	67	38.52	. 837
POND 10	LOO	POND	10	1.795	12.1000	6.45	E6.8E	1.006
POND 10	TUO	POND	100	3,065	12,1000	15.87	40,06	1.524
POND 10	100 ·	POND	٦	1.066	14.5000	.31	38.36	P74.
PRE BLDG		AREA	rvi	198	12.0500	2.49		
PRE BLDG		AREA	10	447	12.0500	6.50		
PRE BLDG		AREA	100	1.141	12,0500	17.25		
PRE BLDG		AREA	н	145	12.0500	1.64		
SDC-P		VDDV	c	100	11 0000	07 E		
1001		UTTU	4		nnn - + +			
WEST		AREA	101	310	11.9000	5 60		:
LSEM		AREA	100	583	11.9000	10.40		• •
WEST		AREA	-4	158	11.9000	2.85		• •

S/N: B21C011070CB FondPack Ver. 8.0067

Date: 9/30/2008

Jahnke & Jahnke Associates Time: 11:00 AM

S/N: B21C011070CB PondPack Ver. 8.0067

Date: 9/30/2008 Jahnke & Jahnke Associates Time: 11:00 AM

	TC CALCS NORTH SEWER	Type To Calcs Neme NORTH SSWER	02
	F:\Pondpack\s-4743 weldall\POST WITH NORTH LEG.PPW	File P:\Pondpack\s-4743 Weldall\POST WITH NORTH LEG.PPW	
<ul> <li>The first mathematical structure is the first mathematica</li></ul>	of concentration concentration and the second se	To Equations used	
<ul> <li>B. C. U. S. L. M. S.</li></ul>		a statistica da servicio da constructiva da servicio da servicio da servicio da servicio da servicio da servic Servicio da servicio da servicio da servicio SCS, TRA-55, Sheet, Elow assumentamentamentamentamentamenta da ser	
<ul> <li></li></ul>	Shinya and Alexandron (1997) and the second s	((****3) * (5***3) / ((***(3)**)) / (π) ***(***) * (****) * (*****) * (*****)	
A LA RAY TARK TARK TARK TARK TARK TARK TARK TARK	ngs n .0130 ulic Length 300.00 ft 24hr P .227000 ft ft	Where: To Time of concentration, hrs n Manihaga n Haritation, hrs P = 277, 24hr, Rain depth, inches	
International distance     International distance       Register of an end of a second distance     Register of a distance       Register of a distance     Register of a distance	elocity 1.38 ft/sec Segment #1 Time. Offic hrs		
And List     Train and List       Train and List     Train and List			
MUNDA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA MARTINA	TULLI TC:		
TATANA TATA DATA ATTA DATTA DATA ATTA DATTA DATA ATTA DATA ATTA DATA ATTA DATA ATTA DATA ATTA DATA			
Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market			
DLDTOG We, N. 1001     Jahle & Gablie Associate Bills 11/100 Mill     Jahle & Gablie Associate Tiles, 11/100 JMill     Jahle & Gablie Associate Tiles, 11/100 JMill			
Tate: 11.00 Million Andressen Tate: 11.00 Million Andressen Tate: 11.00 Million Andressen Tate: 11.00 Million Andressen Tate: 11.00			
111000 111000 111100 JM Deta: 9/30/2008 111100 JM Deta: 9/30/2008 111e: 11.00 JM Deta: 9/30/2008			
0110703 Jahuke & Jahuke Associates Ver. 8.10071 Date: 9/30/2008 S/M: B210010703 Jahuke & Jahuke Associates Poudeack Ver. 8.0057 Date: 9/30/2008 Date: 9/30/2008			
01070CB Jainke & Jainke Associates Ver. 8.0067 Time: 11:00 AM Date: 9/30/2008 S/N: B21C011070CB Jainke & Jainke Associates Pondrack Ver. 8.0067 Time: 11:00 AM Date: 9/30/2008			
011070CB Jahnke Associates Ver. 8.0067 Jahnke Associates Jahnke Associates PondPack Ver. 8.0067 Time: 11:00 AM Date: 9/30/2008		·	
ULUTOCA Janne & Janne Asociates Janne Asociates Janne Asociates Janne Asociates Janne Asociates Janne Asociates Prime: 11:00 AM Date: 9/30/2008 Pondrack Ver. 8.0057 Time: 11:00 AM Date: 9/30/2008			
	011070CB Jahnke & Jahnke Associates Ver. 9.0067 Time: 11:00 AM Date: 9/30/2008	S/N: B21C011070CB Jahnke & Jahnke Associates PondPack Ver. 8.0057 Jahnke il.00 AM Data: 9/30/2006	08

![](_page_130_Picture_0.jpeg)

![](_page_131_Picture_0.jpeg)

Type Runoff CN-Area Name NORTH SEMER File F.\Pondpack\s-4743 W RUNOFF CURVE NUMBER DATA :::::::::::::::::::::::::::::::::::	ldall\POST	WITH NORTH	1	Page 3.01		TYPB Runoff Name PRE BLI File P:\Pond RUNOFF CURVE NOM	CN-Area DG dpack\s-4743 Weidall\ MBER Dara	POST WITH NORT	Fage 1 H LEG, PPW	3.02	
Soil/Surface Description	CA	Area A	Impervious Mdjustment %C %UC	Adjusted CM		Soil/Surface Dea		Area N Arrea	Impervious Adjustment Adjust Arr on		
Paved parking Gatge storm sev roof leg storage north leg storage	- 80 - 80 - 80 - 80 - 80 - 80 - 80 - 80	2.200 1.377 1.620		00.86		crops type h so				10	
COMPOSITE AREA & WEIGHTED ON		5.277		98.00 (98)		COMPOSITIES AREA (	k WEIGHTED CN	5.230	60.00	(69)	
				•							
S/N: 521C011070CB Jah PondPack Ver. 8.0067	oke & Jahnk Time: 1	e Associate: 1:00 AM	s Date:	9/30/2008		S/N: B21C011070CB PondPack Ver. 8.006	<b>Jahnke &amp; J</b> . 57	ahnke Associat. e: 11:00 AM	es Date: 9/30/2	2008	
											*

### Type.... Runoff CN-Area Name.... WEST

File... P:\Pondpack\s-4743 Weldall\POST WITH NORTH LEG.PPW

Page 3.03

RUNOFE CURVE NUMBER DATA

			Tuper	rious			
soil/Surface Description	NL.	Area	Ad ust	tment *no	Adjusted	÷.	
trive	96	.290			98.00	 	
ond	96	.340			98 00	•	
TOOL	96	.103			98 00		
andscape	<b>61</b>	. 433			61.00		
uture parking	80 51	.400			99 00		· .

COMPOSITE AREA & WEIGHTED CN ---> 1.566 87.77 (98)

* Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = (1/3) * (EL2-EL1) * (Areal + Area2 + sg.rt. (Area1*Area2))

FOND VOLUME EQUATIONS

where: Ell, EL2 = Lower and upper elevations of the increment Area1_Area2 = Areas computed for Ell, EL3; respectively Volume - incremental volume between Ell and EL2

S/N: B21C011070CB PondPack Ver. 8.0067

Date: 9/30/2008

Jahnke & Jahnke Associates Time: 11:00 AM

S/N: B21C011070CB PondPack Ver. 8.0067

Jahnke & Jahnke Associates Time: 11:00 AM

Date: 9/30/2009

Page 4.01

File... P:\Pondpack\s-4743 Weldall\POST WITH NORTH LEG. PPW

Type.... Vol: Planimeter Name.... POND 10

.000 Volume Sum (ac-ft)

Planimeter Area Al+A2+sgr(Al+A2) Volume (sq.in) (acres) (acres) (ac-ft)

Elevation (ft)

Planimeter scale: 1.00 ft/in

POND VOLUME CALCULATIONS

1.038 1.038 2.011 2.011

2333 245 460 457 572

.0000 .8782 1.0355 1.0355 1.1998 1.1998 1.3711 1.3711

2675 3187 3723 4282 4282 4282 5471 5969

36.00 11652.000 37.00 118632.000 38.00 15817.000 39.00 11653.000 40.00 21190.000 41.00 23830.000 42.00 2000.000

![](_page_134_Figure_0.jpeg)

Jahnke & Jahnke Associates Time: 11:00 AM

S/N. B21C011070CB PondPack Ver. 8.0067

Date: 9/30/2008

S/N: B21C011070CB PondPack Ver. 8.0067

Jahnke & Jahnke Assòciates Time: 11:00 AM

Date: 9/30/2008

Appendix A A-1	Index of Starting Page Numbers for ID Names	NORTH SERVEN . 2.01 3.01	outlet, 1, 1, 5, 01	Pount 10 Pount 10 Para 4.01	Marana Materabed :: 1.01 Marson : 2.05; 3.03							S/N: B21C011070CB Jahnke & Jainke Åssociates PondPack Ver, 8.0067 Time: 11:00 AM Date: 9/30/2008
2age 5.03	NORTH LEG. PPW			cular 	с с с с/11: с/11:	(forward entrance loss) (per ft of full flow) +- ft		low T1 elev. Dve T2 elev.	ubmerged inlet control, 7.58 cfs 8.66 cfs	\$ Channel  ED		ociates AM Date: 9/30/2008
nput Data	ack/s-4743 Weldall/POST WITH	LET STRUCTURE INPUT DATA	ucture ID = cl	ucture Type & Culvert-Circ Barrels = 1 5000 1	tream Invert = 1.500 11 tream Invert = 35,95 ff iz. Length = 55,00 ft iz. Length = 55,00 ft rel Jappe = 0100 ft	LET CONTROL DATA 0110 01103 A 0120 01201 01201 01213 000 000 0000 000	BT CONTROL DATA ation form = 1 et Control K = .0098 et Control K = .003980 et Control C = .03980 et Control Y = .6700 et Control Y = .1.152 et Control Y = .1.302 et Control Y = .1.302	inlet control form 1 equ. bel inlet control form 1 equ. abo	re between unsubmerged and su een Elows at T1 & T2 37.58 ft> Flow = 37.80 ft> Flow =	ucture ID = TW ucture Type = TW SETUP, DS 	VERGBACE TOLERANCES imum The Leterations = 30 TW tolerance = 01 ft TW tolerance = 01 ft HW tolerance = 01 ft HW tolerance = 01 ft O tolerance = 10 cfs C tolerance = 10 cfs C tolerance = 10 cfs	Jahnke & Jahnke Asso Time: 11:00 A
Type Outlet II Name Outlet 1	File P:\Pondp;	001.	Str	SLF  NO BAF	10 10 10 10 10 10 10 10 10 10 10 10 10 1	оцт Мал Кр Кр Ни	111 111 111 111 111 111 112 12 12 12 12	Use unsubmerged i Use submerged i	In transition zo, interpolate betw At T1 Elev ~ At T2 Elev ~	Stri Stri Free		S/N: #21C011070CB PondPack Ver. 8.0067

![](_page_136_Figure_0.jpeg)

 DATE:
 JUNE 26, 2008

 CHECKED BY:
 N.B.
 FILE NO.:
 WAINCSHA

 CSNA 174
 JOB:
 \$4743
 SHEET
 5

![](_page_137_Figure_0.jpeg)

![](_page_138_Figure_0.jpeg)

![](_page_139_Picture_0.jpeg)

![](_page_140_Figure_0.jpeg)

![](_page_141_Figure_0.jpeg)

Title: Weidall p:\storm cad\weidall north line.stm 10/01/08 01:08:13 PM

Jahnke & Jahnke Associates Inc CT 06708 USA (203) 755-1666 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666

Project Engineer: Michael Birschbach StormCAD v3.0 [319] Page 1 of 1

![](_page_142_Figure_0.jpeg)

### Scenario: Base

# **Combined Pipe/Node Report**

Description	•											
Constructed	Slope	(ft/ft)		0.002906	0.003143	0.003571	0.003500	0.003500	0.003500	0.003500	0.003759	
Downstream	Invert	Elevation	(H)	41.28	40.78	40.53	39.43	39.08	38.73	38.38	37.85	
Upstream	Invert	Elevation	(¥)	42.05	41.00	41.03	39.78	39.43	39.08	38.73	38.38	
Average	Velocity	(ft/s)		4.31	2.74	5.52	4.77	5.75	6.72	7.67	8.87	
Capacity	(cts)			5.66	5.89	9.47	24.26	24.26	24.26	24.26	25.15	
Section	Size			18 inch	18 inch	21 inch	30 inch					
ocal Rational Flov	(cfs)			7.62	4.83	5.65	5.32	4.78	4.77	4.64	4.83	
System L	Contributing	Area	(acres)	0.84	0.53	1.46	2.57	3.10	3.62	4.13	4.66	
Inlet	Ч С	(acres)		0.84	0.53	0.62	0.59	0.53	0.52	0.51	0.53	
Inlet	υ			06.0	0.77	0.90	0.90	0.90	0.90	0.90	0.90	
Area	(acres)			0.93	0.69	0.69	0.65	0.58	0.58	0.57	0.59	
Length	£			265.00	70.00	140.00	100.00	100.00	100.00	100.00	141.00	
Downstream	Node			8-	1-2	1-2	۳- ۲-	1-4	1-5	-6	<u>-</u> -	
Upstream	Node			1-7	-1	8-I	2-I-	-3 -3	4	-2 -1	1-6	
abel				P-7	Ľ.	Р-8	6-d	e e	P-4	Ъ- С-	P-6	

Title: Weldall p:\storm cad\weldall north line.stm 09/30/08 08:34:15 AM

Jahnke & Jahnke Associates Inc CT 06708 USA (203) 755-1666

Project Engineer: Michael Birschbach StormCAD v3.0 [319] Page 1.of 1.
Profile Scenario: Base



p:\storm cad\weidall north line.stm

.



Title: Weldall p:\storm cad\weldall north line.stm 09/26/08 07:58:14 AM

Project Engineer: Michael Birschbach StormCAD v3.0 [319] Page 1 of 1

Profile Scenario: Base 

p:\storm cad\weidall north line.stm 09/26/08 07:58:14 AM

Page 1 of 1





Mannole Calculations	Iowa Concrete Products Co.
Iowa Concrete Proc	ducts Co.
Sizing Calculation	
	r PIPE #1
	Hole Req'C 26 Inches
	Pipe 2: PVC
	Pipe Size 21 Inches 48" Minimum Manhole Required
	Hole Req't 24 Inches For Pipe Specified
PIPE #2-	Pipe Angle 180 Degrees
	Concrete Leg Width
48" MANHOL	E Inside of Manhole
Minimum Diameter R	lequired
	Calculate Reset Print Form Exit
	Version 2
Τa	가 같은 것은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것
<b>I-8</b>	
I-8	
<b>I-8</b>	
<b>T-8</b>	
<b>T-8</b>	
<b>T-8</b>	
<b>T-8</b>	
<b>I-8</b>	
<b>T-8</b>	
<b>T-8</b>	

Manhole Calculations	Iowa Concrete Products Co.
<section-header><section-header></section-header></section-header>	Pipe 1: FVC   Pipe Size 12   Inches 48" Minimum Manhole Required Inches   Hole Req'c 16   Pipe 2: FVC   Pipe Size 12   Pipe Angle 90   Degrees   Concrete Leg Width Measured Along Inside of Manhole 21.4   Lalculate Reset   Print Form Exit
	Version 2.1



Home * About Neenah Foundry * Subsidiaries * Press Room * Sitemap * Contact Us

#### Construction/Municipal Castings

View Products

View Literature & Videos

#### Weir and Orifice Equation



NOTE: The above results do not account for the dome height of Beehive-type grates. Please take note of this when determining the Head (h) value.

For additional information regarding Neenah Inlet Grate Capacities, please contact our Manager of Product Engineering, Steve Akkala P.E., at 920-729-3653 or at sakkala@nfco.com.

2121 Brooks Avenue, Neenah, WI 54956 800.558.5075 • Fax: 920.729.3661 Terms & Conditions

© 2007 Neenah Foundry CO, is a subsidiary of





956



# **ROOF RUNOFF**

Flow rates computed using 1 GPM per 26 sq ft of Roof

#### Full Flow Capacity for PVC pipe

Size (in)	Slope %	Capacity (gpm)
6	0.3	200
8	0.3	430
8	0,4	500
8	0.5	550
8	1.04	800
10	0.25	710
10	1.04	1450
10	3	2460
12	2.08	3300

Project Description	
Project File	p:\flowmaster\weldall.fm2
Worksheet	Building drain
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Full Flow Capacity

Input Data	
Mannings Coefficient	0.009
Channel Slope	0.3000 %
Diameter	6.00 in

			······
Results	、 、		
Depth	6.0	in	
Discharge	200	gal/min	
Flow Area	0.20	ft²	
Wetted Perimeter	1.57	ft	
Top Width	0.00	ft	
Critical Depth	0.34	ft	
Percent Full	100.00		
Critical Slope	0.004643	ft/ft	
Velocity	2.26	ft/s	
Velocity Head	0.08	ft	
Specific Energy	FULL	ft	$\mathbb{N}_{1}$
Froude Number	FULL		
Maximum Discharge	0.48	cfs	
Full Flow Capacity	0.44	cfs	
Full Flow Slope	0.003000	ft/ft	

and the second sec	
Project Description	
Project File	p:\flowmaster\weldall.fm2
Worksheet	Building drain
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Full Flow Capacity

Input Data	
Mannings Coefficient	0.009
Channel Slope	0.3000 %
Diameter	8.00 in

Results		
Depth	8.0	in
Discharge	430	gal/min
Flow Area	0.35	ft²
Wetted Perimeter	2.09	ft
Top Width	0.00	ft
Critical Depth	0.46	ft
Percent Full	100.00	
Critical Slope	0.00434	19 ft/ft
Velocity	2.74	ft/s
Velocity Head	0.12	ft
Specific Energy	FULL	ft
Froude Number	FULL	
Maximum Discharge	1.03	cfs
Full Flow Capacity	0.96	cfs
Full Flow Slope	0.00300	00 ft/ft

Project Description	
Project File	p:\flowmaster\weldall.fm2
Worksheet	Building drain
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Full Flow Capacity

Input Data	
Mannings Coefficient	0.009
Channel Slope	0.4000 %
Diameter	8.00 in

Results			•
Depth	8.0	in	
Discharge	500	gal/min	÷.
Flow Area	0.35	ft²	÷
Wetted Perimeter	2.09	ft	
Top Width	0.00	ft	
Critical Depth	0.50	ft	•
Percent Full	100.00		
Critical Slope	0.004845	ft/ft	
Velocity	3.16	ft/s	
Velocity Head	0.16	ft	
Specific Energy	FULL	ft	
Froude Number	FULL		
Maximum Discharge	1.19	cfs	
Full Flow Capacity	1.10	cfs	
Full Flow Slope	0.004000	ft/ft	

the second s	
Project Description	
Project File	p:\flowmaster\weldall.fm2
Worksheet	Building drain
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Full Flow Capacity
Worksheet Flow Element Method Solve For	Building drain Circular Channel Manning's Formula Full Flow Capacity

Input Data	
Mannings Coefficient	0.009
Channel Slope	0.5000 %
Diameter	8.00 in

Results		
Depth	8.0	in
Discharge	550	gal/min
Flow Area	0.35	ft²
Wetted Perimeter	2.09	ft
Top Width	0.00	ft
Critical Depth	0.53	ft
Percent Full	100.00	
Critical Slope	0.005383	ft/ft
Velocity	3.54	ft/s
Velocity Head	0.19	ft
Specific Energy	FULL	ft
Froude Number	FULL	
Maximum Discharge	1.33	cts
Full Flow Capacity	1.23	cfs
Full Flow Slope	. 0.005000	ft/ft

10/16/08 04:00:47 PM FlowMaster v5.15 Page 1 of 1

Project Description	
Project File	p:\flowmaster\weldall.fm2
Worksheet	Building drain
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Full Flow Capacity

Input Data	-
Mannings Coefficient	0.009
Channel Slope	1.0400 %
Diameter	8.00 in

A 1 March 199			
Results			
Depth	8.0	in	
Discharge	800	gal/min	
Flow Area	0.35	ft²	
Wetted Perimeter	2.09	ft	
Top Width	0.00	ft	
Critical Depth	0.61	ft	
Percent Full	100.00		
Critical Slope	0.00907	1 ft/ft	
Velocity	5.10	ft/s	
Velocity Head	0.40	ft	
Specific Energy	FULL	ft	
Froude Number	FULL		
Maximum Discharge	1.91	cfs	
Full Flow Capacity	1.78	cfs	
Full Flow Slope	0.01040	0 ft/ft	

Project Description	
Project File	p:\flowmaster\weldall.fm2
Worksheet	Building drain
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Full Flow Capacity

Input Data	
Mannings Coefficient	0.009
Channel Slope	0.2500 %
Diameter	10.00 in

Results			
Depth	10.0	in	
Discharge	710	gal/min	
Flow Area	0.55	ft²	
Wetted Perimeter	2.62	ft	
Top Width	0.00	ft	
Critical Depth	0.56	ft	
Percent Full	100.00		
Critical Slope	0.00390	02 ft/ft	
Velocity	2.90	ft/s	
Velocity Head	0.13	ft	
Specific Energy	FULL	ft	
Froude Number	FULL		
Maximum Discharge	1.70	cfs	
Full Flow Capacity	1.58	cfs	
Full Flow Slope	0.00250	DO ft/ft	

FlowMaster v5.15 Page 1 of 1

Project Description			
Project File	p:\flowmaster\w	eldall.fm2	
Worksheet	Building drain		
Flow Element	Circular Channe	əl	
Method	Manning's Form	nula	
Solve For	Full Flow Capac	city	
Input Data			
Mannings Coefficier	nt 0.009		
Channel Slope	1.0400 %	ı	
Diameter	<u> </u>		
		۰.	
Results			
Depth	10.0	in	
Discharge	1,450	gal/min	
Flow Area	0.55	ft²	
Wetted Perimeter	2.62	ft	
Top Width	0.00	ft	
Critical Depth	0.77	ft	
Percent Full	100.00		
Critical Slope	0.00902	22 ft/ft	
Velocity	5.92	ft/s	
Velocity Head	0.54	ft	
Specific Energy	FULL	ft	
Froude Number	FULL		
Maximum Discharge	e 3.47	cfs	
Full Flow Capacity	3.23	cfs	
Full Flow Slope	0.0104	00 ft/ft	

Project Description	
Project File	p:\flowmaster\weldall.fm2
Worksheet	Building drain
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Full Flow Capacity

Input Data		
Mannings Coefficient	0.009	
Channel Slope	3.0000 %	
Diameter	10.00 in	

Results			
Depth	10.0	in	
Discharge	2,460	gal/m	lin
Flow Area	0.55	ft²	
Wetted Perimeter	2.62	ft	
Top Width	0.00	ft	
Critical Depth	0.82	ft	
Percent Full	100.00		
Critical Slope	0.0275	47 ft/ft	
Velocity	10.05	ft/s	
Velocity Head	1.57	ft	
Specific Energy	FULL	ft	
Froude Number	FULL		
Maximum Discharge	5.90	cfs	
Full Flow Capacity	5.48	cfs	
Full Flow Slope	0.0300	00 ft/ft	

Project Description	
Project File	p:\flowmaster\weldall.fm2
Worksheet	Building drain
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Full Flow Capacity

Input Data	
Mannings Coefficient	0.009
Channel Slope	2.0400 %
Diameter	12.00 in

Results		·
Depth	12.0	in
Discharge	3,300	gal/min
Flow Area	0.79	ft ²
Wetted Perimeter	3.14	ft
Top Width	0.00	ft
Critical Depth	0.98	ft
Percent Full	100.00	
Critical Slope	0.01824	46 ft/ft
Velocity	9.36	ft/s
Velocity Head	1.36	ft
Specific Energy	FULL	ft
Froude Number	FULL	
Maximum Discharge	7.91	cfs
Full Flow Capacity	7.35	cfs
Full Flow Slope	0.02040	00 ft/ft





SLANM for Windows Version 9.3.0
(c) Copyright Robert Pitt and John Voorhees 2003
All Rights Reserved

False Institutional Street Delivery file name: P:\Winslamm9.3\wincom Inst Indust Dec06.std Apply Street Delivery Files to Adjust the After Event Load Street Dirt Mass Balance: P:\Winslamm9.3\WI_Com Inst Indust Dec06.std Commercial Street Delivery file name: P:\Winslamm9.3\WI_Com Inst Indust Dec06.std Industrial Street Delivery file name: P:\Winslamm9.3\WI_Com Inst Indust Dec06.std Other Urban Street Delivery file name: P:\Winslamm9.3\WI_Com Inst Indust Dec06.std Freeway Street Delivery file name: P:\Winslamm9.3\WI_Com Inst Indust Dec06.std Rain file name: P:\Winslamm9.3\Rain Files\WI Milwaukee 69.RAN Particulate Solids Concentration file name: P:\Winslamm9.3\WI_AVG01.psc Pollutant Relative Concentration file name: P:\Winslamm9.3\WI_GE001.ppd Particulate Residue Delivery file name: P:\Winslamm9.3\WI_DLV01.prr Model Run Start Date: 03/28/69 Model Run End Date: 12/06/69 P:\Winslamm9.3\WI_SL06 Dec06.rsv Time of run: 10:26:01 Data file description: Weldall Manufacturing Data file name: P:\Winslamm9.3\weldall.dat Residential Street Delivery file name: 6.493 Runoff Coefficient file name: Total Area Modeled (acres): Date of run: 09-26-2008 0.67 Years in Model Run:

Solids Particulate Percent Solids Reduction 0 0.00% 85.32% 0.00% Percent Particulate Particulate 4995 Yield 4995 4995 733.4 1102 (1bs)182.5 Solids (mg/L) 182.5 182.5 26.80 Conc. Runoff % 0 0.00% Volume Reduction 0.00% 0.00% Runoff Volume 438753 438753 438754 438753 (cu ft) 659033 Annualized Total After Outfall Controls: Source Area Total without Controls: Total Before Drainage System: Total After Outfall Controls: Total After Drainage System:

Street Area 1	0.00	0.00	00 0	000		
Street Area 2	0.00	0.00	0.00	0.00	0.00	
Street Area 3	0.00	0.00	0.00	0.00	0.00	
Large Landscaped Area 1	0.00	0.00	0.00	0.43	0.00	
Large Landscaped Area 2	0.00	0.00	00.00	0.00	0.00	
Undeveloped Area	0.00	0.00	00.00	0.00	0.00	
Small Landscaped Area 1	0.00	0.00	0.00	0.00	0.00	
Small Landscaped Area 2	0.00	0.00	0.00	0.00	0.00	
Small Landscaped Area 3	0.00	0.00	0.00	0.00	0.00	
Isolated/Water Body Area	0.00	0.00	0.00	0.00	0.00	
Other Pervious Area	0.00	0.00	0.00	0.00	0.00	
Other Dir Cnctd Imp Area	0.00	0.00	0.00	00.00	0.00	
Other Part Cnctd Imp Area	0.00	0.00	0.00	0.00	0.00	
 Dotal	. 00	0.00	0.00	6.49	0.00	
Нтеешан Яснисе Атеа						
ATCOMAT POULDE ALCO	ALCA (AC	LCS)				
Pavd Lane & Shldr Area 1 Pavd Lane & Shldr Area 2	00.00					
Pavd Lane & Shldr Area 3	0.00					
Pavd Lane & Shldr Area 4	0.00					
Pavd Lane & Shldr Area 5	0.00					
Large Turf Areas	0.00					
Undeveloped Areas	00.0					
Other Pervious Areas	00.00					
Other Directly Conctd Imp	00.00					
Other Partially Concto Imp	00.0					
Total	00.00					
Total of All Source Areas		6.49				
Total of All Source Areas						
less All Isolated Are	as	6.49				
Source 1	Area Conti	rol Pract:	ice Inform	ation		
Land Use: Industrial						
Roofs 1 Source area 1	number:	16				

The roof is pitched

The Source Area is directly connected or draining to a directly connected area 92

Roofs 2 Source area number:

The roof is pitched The Source Area is draining to a pervious area (partially connected impervious area) The SCS Hydrologic Soil Type is Silty

The Source Area is draining to a pervious area (partially connected impervious area) The Source Area is draining to a pervious area (partially connected impervious area) The Source Area is directly connected or draining to a directly connected area The Source Area is directly connected or draining to a directly connected area Other Outflow 00.00 (cfs) 9 12 12 00.00 P:\WINSLAMM9.3\NURP.CPZ Height from datum to bottom of weir opening: No maximum value entered 7.45 Natural Seepage ហ ഗ 1.88(in/hr) Stand pipe height above datum (ft): 0.00 0.00 6.493 Invert elevation above datum (ft): Invert elevation above datum (ft): 0.167 0.167 Height of weir opening (cfs): 111 ლ თ 96 Source area number: 97 0 Area served by detention ponds (acres) = Discharge Coefficient (ft): -1 Particle Size Distribution file name: 1. Stand pipe diameter (ft): Source area number: Source area number: Source area number: Vertical Stand Pipe Weir crest length (ft): Outlet type: Broad Crested Weir Orifice diameter (ft): Weir crest width (ft): Wet Detention Ponds Orifice diameter (ft): The SCS Hydrologic Soil Type is Silty з.8 Pond Area The SCS Hydrologic Soil Type is Silty 0 The SCS Hydrologic Soil Type is Silty 0.0000 0.0530 (acres) Driveways 1 Source area number: 103 Initial stage elevation (ft): Maximum flow allowed into pond (cfs): Peak to Average Flow Ratio: Pond stage and surface area Orifice Orifice Outlet Characteristics: Stage (ft) 00.00 10.0T Outlet number 3 Outlet number 1 Outlet number 2 Outlet number 4 Outlet type: Outlet type: Outlet type: Paved Parking/Storage 1 Paved Parking/Storage 2 Paved Parking/Storage 3 Large Landscaped Area 1 Control Practice 1 : Entry Number . H . 7 . ഗ 4 2. . --1 . 7 . N . ო ò Drainage System ----. N . ო 4. <u>_</u> Outfal] G

	1.00	0.0720	0.00	0.00	
сл	2.00	0.0910	0.00	0.00	
4	3.00	0.1120			
ш	3.50	0.1230			
9	4.00	0.1830			
	4.50	0.2430			
	5.00	0.2670			
	6.00	0.3190	0.00		
10	7.00	0.3720	0.00		
	8.00	0.4280	00.0		
12	9.00	0.4870	0.00		
13	10.00	0.5470	0.00	0.00	
14 14	11.00	0.5970	0.00	0.00	
Pollutants to be Ana	Jvzed and Drinted.				
Pollutant N.	ame	Pollutant Tvne			
	-				
Solids		Particulate			. *
			-		
		· .			





## midwest engineering services, inc.



geotechnical environmental

materials engineers

## SUBSURFACE EXPLORATION AND FOUNDATION EVALUATION

**Proposed Addition** 

Weldall Manufacturing, Inc.

Waukesha, Wisconsin

Prepared for

Weldall Manufacturing, Inc.

2001 South Prairie Avenue

Waukesha, WI 53189

July 30, 2008

MES Project No. 7-83087

#### midwest engineering services, inc.



July 30, 2008

geotechnical • environmental • materials engineers

821 Corporate Court Suite 102 Waukesha, WI 53189-5010 262-521-2125 FAX 262-521-2471 www.midwesteng.com

Mr. David L. Bahl Weldall Manufacturing, Inc. 2001 South Prairie Avenue Waukesha, WI 53189

SUBJECT: Subsurface Exploration and Foundation Evaluation Proposed Addition Weldall Manufacturing, Inc. Waukesha, Wisconsin MES Project No. 7-83087

Dear Mr. Bahl,

The subsurface exploration and foundation evaluation for the referenced project has been completed. Three (3) copies of the report are included herein. A copy has also been previously provided electronically. As requested, we have also submitted one electronic copies to Mr. Brian Fischer of Fischer, Fischer, Theis, Inc. and to Mr. Mike Birschbach of Jahnke and Jahnke Associates, Inc.

After you have had the opportunity of reading the report, please call at any time with any questions or comments you may have. Midwest Engineering Services, Inc. appreciates the opportunity to be of service on this project, and looks forward to continuing as your geotechnical consultant during the design and construction phases, as well as on your upcoming projects.

Very truly yours,

MIDWEST ENGINEERING SERVICES, INC.

Bund Broback

Bradley J. Broback, P.E. Project Engineer

Daniel Z. anderson (ZZ.)

Daniel B. Anderson, P.E. Branch Manager

## TABLE OF CONTENTS

	Page
	1
Scope	
Authorization	
Site and Project Description	<b>1</b>
Site Features	
Project Description	
Exploration and Laboratory Procedures	2
Scope Summary	
Field Exploration	
Laboratory Testing	
Description of Subsurface Conditions	4
General	
Soli Conditions     Groundwater Observations	
	-
Evaluation and Recommendations	5
General Development Considerations     Site Preparation	
Foundation Analysis	
Floor Slabs	
Exterior/Unheated Area Slabs	
Utility Construction	
Loading Dock Walls	
Construction Considerations	13
Groundwater Control	
<ul> <li>Excavation and Site Drainage</li> </ul>	
Seismic Design Considerations	
Stormwater Management Area Considerations	14
<ul> <li>Preliminary Liner and Embankment Design</li> </ul>	
Pavement Design Recommendations	17
General Comments	18
Appendix (in order of appearance)	
Figure 1 - General Area Plan	
Figure 2 - Boring Location Diagram	
Soll Boring Logs (26)	
<ul> <li>Educatory Data Sneets (3)</li> <li>Soil Evaluation Forms (2)</li> </ul>	
General Notes	

#### INTRODUCTION

#### <u>General</u>

This report presents the results of the subsurface exploration and foundation evaluation for the proposed Weldall Manufacturing Addition in Waukesha, Wisconsin. The work was performed for Weldall Manufacturing, Inc. at the request of Mr. David L. Bahl.

#### Purpose

The purpose of this study was to evaluate the subsurface conditions at specific boring locations on the site, and to establish parameters for use by the design engineers and architects in preparing the foundation, floor slab, pavement, and stormwater management area designs for the proposed project.

#### <u>Scope</u>

The scope of services included a site reconnaissance, the subsurface exploration, a determination of soil characteristics by field and laboratory testing, and an evaluation and analysis of the data obtained. The scope of the field work, including the number, depth, and locations of the borings was determined by MES after consultation with the client.

#### Authorization

The description of services and authorization to perform this subsurface exploration and analysis were in the form of a signed acceptance copy of MES Proposal No. 7-8187 dated July 14, 2008. The general conditions for the performance of the work were referenced in the proposal. This report has been prepared on behalf of, and exclusively for the use of Weldall Manufacturing, Inc. The information contained in this report may not be relied upon by any other parties without the express written consent of MES, and acceptance by such parties of MES' General Conditions.

#### SITE AND PROJECT DESCRIPTION

#### Site Features

The project site is located at 2001 South Prairie Avenue in Waukesha, Wisconsin. Currently, the site consists of an approximate 90,000 square foot building (including office and warehouse) with associated parking/drive areas, and two (2) ponds (see Figure 1). The site is bound by wetlands to the south and west, and Wisconsin Central Ltd. Railroad tracks to the east. At the time of the exploration, the area of the addition generally consisted of an asphalt paved parking/drive area or vacant field with ground

cover generally consisting of grass and a few trees. Site topography was rolling and generally sloped down to the west with about 13 feet of elevation difference between boring locations.

#### Project Description

From the information provided by the client, it is understood that the proposed project will consist of a single story warehouse addition to the existing building, about 80,000 square feet in plan area (see Figure 2). The building construction is estimated to be of steel frame, with a concrete slab-on-grade floor (without a basement), to match the existing building. The addition development also includes a new paved parking/drive area to the north, and a new stormwater management area to the west. It is also estimated that the addition will include loading docks.

The finished floor of the addition is estimated to be the same as the existing building, EL. 45.37. The existing grades in the area of the building addition presently range between about EL. 51.0 and EL. 48.2. Therefore, on the basis of the estimated first floor elevation, only minor grade changes, generally consisting of about 3 to 6 feet of cut, are anticipated. However, this will also be dependent on the subgrade preparation criteria, to be discussed in a later section.

Structural loading of the proposed building addition was not provided, but is estimated to be moderate to heavy in magnitude. It is understood that the addition may include one or more cranes. It is estimated that the proposed pavement areas will be subjected to relatively moderate to heavy traffic volumes and loading. The size, type, bottom elevation and other design details of the proposed stormwater management area were not provided.

## EXPLORATION AND LABORATORY PROCEDURES

#### Scope Summary

The field and laboratory data utilized in the evaluation and analysis of the subsurface materials were obtained by drilling exploratory test borings, securing soil samples by the split-spoon sampling method, and subjecting the samples to laboratory testing.

With respect to the stormwater management area, the field and laboratory work for classification of the subgrade soils was performed to provide information for use by the basin design personnel when considering requirements of Chapter NR151 of the Wisconsin Administrative Code, and of WDNR Technical Standard 1002, "Site Evaluation for Stormwater Infiltration" guidelines. The design of the proposed stormwater management area was beyond the scope of services for this project.

#### Field Exploration

Twenty-six (26) soil test borings were drilled for this project to depths ranging from 6.5 feet to 21.5 feet below the existing ground surface. Fifteen (15) borings were performed to a depth of 21.5 feet within proposed building and pond areas; eight (8) borings were performed to a depth of 6.5 feet in proposed pavement areas; and three (3) borings (B-1, B-2, and B-6) were performed to a depth of 16 feet in a potential borrow area. The number, depths, and locations of the borings were generally provided by the client. The borings were staked in the field by the client's representative. The surface elevations shown on the logs were provided by the client and refer to the City of Waukesha datum.

The soil test borings were performed with both truck mounted and all-terrain vehicle (ATV) mounted rotary drilling rigs utilizing continuous flight hollow stem augers to advance the holes. Representative samples were obtained by the Standard Penetration Test (SPT) method in general accordance with ASTM D-1586 procedures at 2.5 foot intervals to 10 feet, and at 5 foot intervals thereafter, to the end of the borings. As an exception, samples were obtained at continuous 2 foot intervals at the borings performed within the proposed stormwater management area and within the potential borrow area. The SPT provides a means of determining the relative density of granular soils and comparative consistency of cohesive soils, thereby providing a method of evaluating the relative strength and compressibility characteristics of the subsoils.

The SPT soil samples were transferred to clean glass jars immediately after retrieval, and returned to the laboratory upon completion of the field operations. Samples will be discarded unless other instructions are received. All soil samples were visually classified by a soils engineer in general accordance with the Unified Soil Classification System (ASTM D-2488-75), except the stormwater management area borings, which were classified by the USDA soil classification system. After completion of the borings, the auger holes were backfilled to the ground surface with bentonite chips and the boreholes performed in pavement areas were patched with cold patch asphalt.

A copy of the Soil Boring Logs and Boring Location Diagram (Figure 1) are enclosed in the Appendix. The soil stratification shown on the logs represents the approximate soil conditions in the actual boring locations at the time of the exploration. The terms and symbols used on the logs are described in the General Notes found in the Appendix.

#### Laboratory Physical Testing

Soil samples obtained from the exploration were visually classified in the laboratory, and subjected to testing, which included moisture content determination, Atterberg Limits determination, and grain size analysis by mechanical and hydrometer methods.

Selected cohesive soil samples were tested in unconfined compression with a controlled strain loading rate and/or with a calibrated hand penetrometer to aid in evaluating the soil strength characteristics. The values of strength tests performed on soil samples obtained by the Standard Penetration Test Method (SPT) are considered approximate, recognizing that the SPT method provides a representative but somewhat disturbed soil sample.

The laboratory testing was performed in general accordance with the respective ASTM methods, as applicable, and the results are shown on the boring logs and data sheets in the Appendix.

## DESCRIPTION OF SUBSURFACE CONDITIONS

#### <u>General</u>

A description of the subsurface conditions encountered at the test boring locations is shown on the Soil Boring Logs. The lines of demarcation shown on the logs represent approximate boundaries between the various soil classifications. It must be recognized that the soil descriptions are considered representative for the specific test hole locations, and that variations may occur between and beyond the sampling intervals and boring locations. Soil depths, topsoil and layer thicknesses, and demarcation lines can be utilized for preconstruction planning, but should not be expected to yield exact and final quantities. A summary of the major soil profile components is described in the following paragraphs.

#### Soil Conditions

The surficial soils at the boring locations consisted of about 2 to 13 inches of topsoil or topsoil fill generally comprised of sandy clay; about 3 to 4 inches of asphalt overlying about 6 to 14 inches of crushed stone (aggregate base); or about 7 to 12 inches of crushed concrete or crushed stone fill. The underlying soils generally consisted of natural loose to dense light brown sand with fine sand seams, to the maximum depths explored. Strength tests indicated N-values ranging from about 5 to 28 blows per foot. At some locations, a thin layer of natural sandy clay was present overlying the granular soils.

Exceptions to the foregoing included fill and possible fill comprised of silty sand to silty clay present at B-23 through B-26, to depths of about 1.5 to 7 feet (El. 39.3 to EL. 33.0). Additionally, topsoil and possible buried topsoil were present at B-25 and B-26 to depths of about 2 and 3 feet (El. 39.1 and EL. 36.9). Strength tests on the fill and possible fill indicated N-values ranging from about 4 to 16 blows per foot.

Atterberg Limits determination testing and grainsize analysis on samples obtained from B-1(0-2 feet), B-2 (0-2 feet), and B-6 (2-4 feet) found that these materials has liquid limits ranging from about 26 to 37; plasticity indices ranging from about 14 to 23; clay contents of about 12, 28.1, and 13.5 percent; and percent fines of about 22.7, 57, 25.1, respectively.

The foregoing discussion of soil conditions on this site represents a generalized soil profile as determined at the test boring locations. A more detailed description and supporting data for each test location can be found on the individual Soil Boring Logs.

#### Groundwater Observations

Groundwater observations were made during the drilling operations, and in the open boreholes at completion. Groundwater was encountered during auger advancement in most of the borings, at depths ranging from about 10 to 15 feet (EL. 32.3 to EL. 26.0) below the ground surface. Upon completion and removal of the augers, no groundwater was present above the caved granular soils at any of the borings.

On the basis of the field observations, the soil coloration and relative moisture contents, the free water level at the borings is judged to be in the depth range of about 10 to 15 feet (EL. 32.3 to EL. 26.0) below the existing ground surface at the time of the exploration.

The groundwater observations reported herein are considered approximate. It must be recognized that groundwater levels fluctuate with time due to variations in seasonal precipitation, lateral drainage conditions, and soil permeability characteristics. Longer term monitoring would be required to better evaluate groundwater levels on this site.

### EVALUATION AND RECOMMENDATIONS

#### General Development Considerations

In view of the subsurface conditions encountered in the test borings, together with the structural loading criteria and development grades anticipated, conventional spread footings, along with conventional slab-on-grade construction, can be used for support of the proposed structure.

The existing soils can be utilized for support of the paved parking/drive areas after proper subgrade preparation. However, overexcavation of unsuitable buried topsoil and existing fill soils will be necessary in the area of B-25 and B-26. A discussion of the building foundation and pavement design parameters, as well as the support conditions for the floor slab and pavement are included in later sections.

Although no major difficulties with groundwater control are expected, the predominance of granular soils will result in significant excavation related difficulties.

#### Site Preparation

The presence of organic topsoil and vegetation in the subgrade can adversely affect the serviceability of structural fills, foundations, floor slabs, pavements, and other structures placed upon them. Approximately 2 to 13 inches of topsoil were present on the surface of the site at the boring locations. However, some variation should be anticipated. All topsoil, vegetation, trees, roots and other organic matter must be stripped from the areas of footings, floor slabs, pavements, sidewalks, and other structures.

Topsoil depths may increase substantially within and encroaching upon wetland areas. It is generally recommended that development within wetland areas not be performed due to the typical presence of highly organic soils and shallow groundwater. If such development is contemplated, special permits will likely be required from the Army Corps of Engineers, the WDNR, or other government agencies.

Backfill adjacent to the existing foundation walls, and within any existing utility trenches, must be evaluated by a representative of the soil engineer to determine its suitability to support new fill, floor slabs, and footings. Some removal of loose or unsuitable soils may be expected to be necessary. New construction must be performed in a manner that will prevent the undermining of existing footings where excavations extend near the existing building. If excavation is performed within the foundation influence zone of the existing footings, the existing foundations must be properly underpinned to prevent instability and damage to the existing structure. Existing utilities or portions of the existing structures that extend into the planned addition area must be completely removed or rerouted, as necessary, and the area properly backfilled.

After stripping the topsoil and cutting high areas of the site to the planned finished grade, and prior to the placement of new fill which may be placed to raise grades, the subgrade must be thoroughly proofrolled to detect unstable, yielding soils, which must be removed or improved by appropriate preparation and compaction techniques. Proofrolling should consist of overlapping passes in a perpendicular grid pattern of a fully-loaded tandem-axle dump truck, or other equipment of similar size and weight. However, care must be used on this site to avoid disturbing the near surface fine-grained soils during the proofrolling, especially during periods of precipitation or spring thaw. Proofrolling with rubber tired equipment may be preferable, but should be performed in consultation with the geotechnical engineer at the time of construction. Unstable soils should be expected, at least on an isolated basis. When encountered, they must be properly remediated. Scarification, drying and recompaction of wet soils or removal and replacement with suitable fill, are two methods which can be considered, but this must be determined by the soils engineer at the time of

construction. Low areas may then be raised to the planned grades with suitable properly compacted fill.

The exposed subgrade in the building and pavement areas is expected to consist of at least some areas of cohesive soils. Such soils are considered highly moisture sensitive and subject to softening. Therefore, equipment and worker traffic must be kept to a minimum on subgrade bearing surfaces, especially during times of precipitation or following spring thaw. Some difficulty with subgrade preparation can be expected in wet or cold weather conditions. Removal of unsuitable portions of the near surface soils and replacement with structural fill will likely be required, on at least an isolated basis, especially if earthwork is not carried out during periods of relatively warm, dry weather, which provide more favorable conditions for drying of these soils. Any soft zones, which cannot be improved by scarification and aeration, must be removed and replaced with compacted structural fill, such as clean crushed stone, possibly in conjunction with the use of a geotextile fabric. Lime and fly ash modification are two additional remedial measures which can be considered. However, this must only be performed at the direction and under the supervision of the geotechnical engineer. A proper mix design must be performed prior to the performance of any modification. Substantial construction delays and difficulty with subgrade stabilization should be expected during periods of wet and/or cool weather. Consideration should be given to installing construction roads to reduce disturbance to the sensitive subgrade soils.

Every effort must be made to keep excavations dry. If construction proceeds during wet weather, some additional overexcavation may be necessary. If weather permits, the soil could be dried and recompacted. A crushed stone working mat, possibly in conjunction with a geotextile fabric may also be feasible to help stabilize subgrades. Site grading runoff should be directed to catch basins, so that the potential for the softening of the foundation and pavement subgrade soils is reduced.

Where the removal of unsuitable bearing material is performed beneath proposed footings, the excavation must extend laterally beyond the perimeter of the foundation for a distance at least equal to the thickness of the fill below the footing bottom. This general guideline also applies to instances where a raised structural fill pad is constructed to achieve a bearing elevation greater than existing grades. The influence zone of footing stresses can be represented as an imaginary 45° line extending downward and outward from the footing bottom. All fill placed within this zone after cutting to firm soil must be properly engineered, from the bottom of the cut, up to the floor slab subgrade elevation.

If site grades are raised in excess of 2 feet, the first lift of new fill must be placed so as to extend a minimum lateral distance of 5 feet beyond the planned top building pad dimension (for fills less than 5 feet in thickness), or for a distance equal to at least 1 foot laterally beyond the top pad dimension for every foot of fill thickness (for fills greater than 5 feet in depth). Subsequent lifts can then be placed on an approximate
1H:1V slope back up to the planned top perimeter dimension of the pad. Proper moisture control is essential to reduce the amount of compactive effort necessary to achieve the desired densities.

When a firm and stable subgrade is established, low areas may be raised to planned grades with properly compacted structural fill. Any new fill should be a clean granular soil, such as those materials meeting the gradations outlined in Section 209 or 305 of the State of Wisconsin Standard Specification for Highway and Structure Construction. If fine-grained soils, such as those with high silt or clay content are used, they should generally be placed over large open areas, where conditions are more favorable for the proper placement and compaction of such materials. It must be recognized that high silt or clay content materials are difficult to compact when placed at moisture contents beyond a few percent of the optimum moisture content. Fill must be placed in layers of not more than nine (9) inches in thickness, at moisture contents at or near optimum, and be compacted to a minimum density of 95 percent of the maximum dry density as determined by ASTM designation D-698. The on-site soils beneath the topsoil are considered suitable for use as new fill to raise grades, generally over large areas. Silt, clay, wet However, some sorting or moisture conditioning may be required. granular soils, or organic materials are not suitable for reuse as compacted fill in trenches, or adjacent to foundation stem walls or retaining walls.

Proper moisture control is essential to reduce the amount of compactive effort necessary to achieve the desired densities. This is especially true of clayey soils, where scarification and aeration may be required to achieve near optimum moisture levels prior to compaction. A sheepsfoot roller is generally required for compaction of clayey soils, whereas a vibratory smooth drum roller is preferred for granular material. Small hand-operated compactors and granular fill should be used in confined areas. Granular fills are generally more readily compacted to the required densities in such applications.

It is recommended that well-graded granular soils be utilized as backfill in new utility trenches and alongside below grade walls to reduce the potential for consolidation and settlement of the fill. All fill soils must be placed and compacted under engineering controlled conditions, to provide suitable support for overlaying structures and roadways. Additional guidance can be provided at the time of construction in the selection process for grade-raising fill and trench backfill.

When excavations encroach upon or extend below the groundwater or perched zones, and into sandy or silty soils, subgrade instability and sloughing/caving of sidewalls can occur. Some overexcavation of softened or loosened soils, in conjunction with the use of a crushed stone working mat, may be necessary. Additionally, significantly widened excavations may result, or be required for stability.

The selection of fill materials for various applications should be done in consultation with the soils engineer. Similarly, the evaluation of the subgrade and placement and compaction of fill for structural applications should be monitored and tested by a qualified representative of the soils engineer.

#### **Foundation Analysis**

The proposed addition may be supported by a conventional spread foundation system, bearing on suitable naturally occurring soils or within structural fill, prepared as discussed in a previous section. Considering the estimated finished floor elevation (EL. 45.37), interior and exterior footings will bear at about EL. 43.9 and EL. 41.4, respectively. Based upon the borings, natural sand or sandy clay soils are generally expected to be present at these approximate elevations. Spread and continuous wall footings bearing upon suitable natural soils, or upon compacted structural fill, may be designed for a net allowable soil pressure of 3000 psf.

The suitability of the existing soils for support of the proposed foundation must be determined by testing by a qualified geotechnical engineer during construction, utilizing static cone penetrometer tests or dynamic cone penetrometer tests for cohesive and granular soils, respectively. Soft, loose, or otherwise unsuitable materials not disclosed by the borings, may be encountered in the foundation excavations at the bearing elevation. If unsuitable existing soil is present, it must be removed throughout a zone extending one foot laterally for each foot removed below the foundation, on either side of the planned footing. The overexcavated area can then be backfilled with structural compacted fill.

In lieu of the use of deep spread footings or the placement of compacted structural fill, any unsuitable materials could be removed from beneath footings and the excavation backfilled to the original planned bearing depth with a lean concrete slurry mix. If it is elected to utilize a lean concrete slurry to replace the unsuitable soils, the foundation excavations should be 4 inches wider than the proposed footing width and must extend through the unsuitable bearing materials to the natural soils. The slurry must be placed immediately after excavation to avoid intrusion of soil into the excavation. The concrete should contain sufficient aggregate and cement to attain a 28-day compressive strength of at least 1000 psi. Some sloughing or caving of the overlying soils may be experienced. Should this occur during the slurry placement, the area must be removed and recast. Additionally, should caving become extensive, it may be necessary to substantially widen excavations to avoid soil intrusion into the concrete slurry. This may result in the use of additional slurry quantities significantly in excess of preconstruction budget estimates.

Where new foundations are planned adjacent to existing foundations, the effects of overlapping soil stresses must be considered. The net allowable soil bearing pressure of 3000 psf must not be exceeded. It should be noted that backfill materials may be

encountered within existing utility trenches and adjacent to existing foundation walls. Overexcavation of unsuitable trench backfill and replacement with structural fill may be necessary for proper foundation support. All foundations must bear upon suitable natural soils or properly placed and compacted structural fill.

All perimeter footings must be placed at a depth of at least 4 feet below the finished grade for frost protection. Due to periodic severity of winters in this area, it is recommended that footings in poorly heated or unheated areas of the building also be placed at least 4 feet below the adjacent exterior grade. Interior footings not subject to frost action may be placed at a shallow depth of 18 inches below the floor slab, provided they bear on suitable natural soils or engineered fills. All footings must be protected from the effects of frost if construction is carried out during winter months.

It is recommended that the footings supporting individual columns have a minimum dimension of 30 inches, and continuous footings have a minimum width of 24 inches, even if the maximum recommended allowable bearing pressure is not fully utilized. In order to minimize the effects of any slight differential movement that may occur due to variations in the character of the supporting soils and any variations in seasonal moisture contents, it is recommended that all continuous footings be suitably reinforced to make them as rigid as needed.

In general, the performance of the foundation system on this site is dependent on the various factors discussed herein. The excavation, preparation, and concreting of foundations should be monitored and tested by a representative of the soils engineer.

#### Floor Slabs

Prior to constructing the floor slab or pavements, and prior to the placement of any fill used to raise grades, the exposed subgrade must be prepared utilizing the proofrolling procedures described previously. The existing fill/possible fill and buried topsoil encountered at B-25 and B-26 should be removed to expose suitable underlying natural soils, present at depths of about 3 to 3.5 feet (EL. 37.6 to EL. 36.9). It is recommended that the undercutting operations and subsequent proofrolling operations be monitored by a representative of the geotechnical engineer to ensure that a firm, suitable subgrade is present prior to placement of new fills, or to construction of the floor slab and pavements. In areas that exhibit soft, yielding or unstable soil conditions, the following remedial measures are recommended to provide a stable subgrade.

Localized wet, soft or unstable areas can be undercut to such depths determined necessary in the field to reach stable material, and the area backfilled with imported crushed stone, such as the 1.25-inch gradation specified in Section 305 of the WisDOT Standard Specifications, placed and compacted as recommended in the *Site Preparation* section of this report. If relatively thick zones or areas of extensive yielding are observed, and they cannot be stabilized by normal discing, aeration and

recompaction procedures, undercutting and replacement with crushed stone and geotextile fabric (if needed) may also be required in these areas.

The floor slab may be designed utilizing an estimated modulus of subgrade reaction of 150 pci based on the presence of natural sandy clay in areas, prepared as discussed in this report. The final design and detailing should be performed by a qualified structural engineer based on the intended slab use, loading conditions and anticipated subgrade conditions.

A granular mat, which can be designed as a drainage layer, should be provided below the floor slab. This must be a minimum of six (6) inches in thickness and properly compacted. In moisture sensitive areas, a vapor retarder may be placed beneath the floor slab or base course. However, it is recommended that the architect be consulted in this regard. The proper use of a vapor retarder may not completely prevent moisture beneath or on top of slabs. If the base course contains sharp particles, a cushion layer of sand approximately 2 inches in thickness may be required to provide protection from puncture.

The floor slab should be suitably reinforced to make it as rigid as necessary and proper joints provided at the junction of the slab and the foundation system so that a small amount of independent movement can occur without causing damage. Large floor areas must be provided with joints at frequent intervals (maximum spacing of 30 times the slab thickness, per ACI) to compensate for concrete volume changes (shrinkage). Where the slab will be supporting live loads, such as from moving vehicles, joints must be keyed or dowelled to permit proper load transfer. It is recommended that appropriate construction methods and curing procedures be used to minimize shrinkage and curling of the floor slab.

#### Exterior/Unheated Area Slabs

Entry slabs, sidewalks, aprons, and other slabs in exterior or unheated areas may bear upon silty or clayey soils. Such materials are highly frost susceptible and poorly drained. Slabs placed directly upon such soils are subject to heaving and subsequent settlement due to freeze/thaw cycles. This can result in cracking, misalignment, and other related effects (especially at joints). It is recommended that consideration be given to limited undercutting of the frost susceptible materials to a depth of 1 to 2 feet below the slab, and replacement with well graded, properly placed and compacted granular soils. A properly designed underdrain system connected to the municipal sewer (if permissible) or directed to on-site stormwater management areas should also be incorporated to reduce the potential effects of freeze/thaw cycles.

#### Utility Construction

In general, the on-site soils can be used for support of utility lines. Substantial difficulty with the stability of utility trenches should be expected due to the presence of granular soils across the site, especially in the presence of water. The use of shoring, bracing, or trench boxes will be required. Additionally, excavations encroaching upon or extending below the groundwater within granular soils can become substantially unstable when the confining effect of the overburden is removed. Some undercutting of softened soils, in conjunction with the placement of crushed stone or other suitable granular backfill may be necessary to establish a stable working mat and/or bearing subgrade. An adequate dewatering effort and bracing of sidewalls may be required. Utility construction should be performed in accordance with "The Standard Specifications for Sewer and Water Line Construction" for the State of Wisconsin.

It is recommended that well graded granular soils such as those specified in Tables 37 and 39 of the Standard Specification for Sewer and Water Construction be utilized as backfill in utility trenches to reduce the potential for consolidation and settlement of the backfill. The existing sand soils are considered suitable for re-use in such applications. However, those obtained from below the groundwater will require long drying times, and importing of suitable granular soils may be necessary in order to avoid construction delays. All fill soils should be properly placed and compacted under engineering controlled conditions to provide suitable support for overlaying structures and roadways. Silty and clayey soils are not recommended for use as backfill within utility trenches due to the substantial difficulty of obtaining proper compaction in confined areas.

As with all excavation work, all open cut trenches must be properly shored and braced as required by applicable federal and state OSHA codes, and as necessary to protect life and property.

#### Loading Dock Walls

It is recommended that any loading dock walls be protected by a suitable drainage system to prevent development of excessive lateral pressures. The walls must therefore be backfilled for a lateral distance of 3 to 4 feet with a well-graded, free draining granular material such as crushed stone or sand and gravel. Silty and clayey soils, wet granular materials, and organic soils are not recommended for such applications. The granular materials must be placed in lifts not exceeding 12 inches in thickness, and be compacted to at least 90% of the maximum dry density as determined by Standard Proctor (ASTM D698). However, where the wall backfill will be within the influence zone of the building footings, floor slabs, or other structural areas, compaction must be increased to at least 95 percent of the Standard Proctor value.

Based upon the use of free draining granular backfill ( $\phi$ =30;  $\gamma_m$ =130 pcf), an equivalent fluid pressure of 40 psf may be used as the horizontal component of the active earth pressure for walls which are not restrained from movement. For "fixed" walls, an at rest fluid pressure of 65 psf should be used. It must be recognized that the above values are based upon a drained condition, and are exclusive of traffic and other surcharge loads near the walls, which must be factored into the design. It is therefore recommended that a fabric wrapped footing drain be placed behind the walls, and directed to a suitable outlet, such as the municipal sewer (if permissible). If this is not feasible, the drains must be properly daylighted to an appropriate area of the site to prevent pavement icing in winter.

## CONSTRUCTION CONSIDERATIONS

#### <u>Groundwater Control</u>

The groundwater level in the borings was at depths of about 10 to 15 feet (EL. 32.3 to EL. 26.0) at the time of the exploration. On the basis of the observations and the estimated finished floor elevation, major difficulty with groundwater is not expected during excavation work on this site. Where excavations extend a few inches or so below the groundwater, or into perched conditions, it is expected that filtered sump pumps or other conventional means should suffice to control the groundwater. However, for deeper excavations, or for substantial perched zones, prolonged dewatering with a series of sumps or well points and high capacity sump pumps, or other more comprehensive means may be necessary to facilitate construction.

Since the foundation materials are subject to softening when exposed to free moisture, every effort should be made to keep excavations dry. Discharge water from roof drains should be directed away from the building, and the site grading direct runoff to catch basins, so that the potential for the softening of the foundation and pavement subgrade soils is reduced.

## Excavations and Site Drainage

Sloping, shoring or bracing of the excavation sidewalls will be necessary. Trenching in granular soils may be difficult due to the instability of vertical slopes, and will therefore require a flattening of trench sides, or some other means of protection, to facilitate construction and to protect life and property. Substantial sloughing and caving should be expected within unprotected excavations. The degree of excavation instability problems is dependent upon the depth and length of time that excavations remain open, excavation bank slopes, water levels and the effectiveness of any dewatering systems. However, severe instability can be expected within granular soils, especially encroaching upon and extending below the groundwater. All excavation work must be performed in accordance with OSHA and local building code requirements.

Where excavations encroach upon or extend below the groundwater or perched zones and into fine sand, silt, or soft clay, they may become substantially unstable when the confining effect of the overburden is removed. Significant sloughing or caving of sidewalls may also occur. Some overexcavation of softened or loosened soils, in conjunction with the use of a crushed stone working mat, may be necessary to establish a stable bearing subgrade. Additionally, significantly widened excavations may result, or be required to maintain or achieve sidewall stability.

Excavations in close proximity of the existing structure must be performed with caution and utilize methods which will prevent undermining of existing foundations and destabilizing the existing structure. New building foundations should be stepped to match the bearing elevation of the existing building foundations and bear on suitable natural soil or structural fill. The use of properly designed shoring and bracing or sheet piling, or underpinning of the existing foundations will be necessary if excavation is performed within the influence zone of existing foundations. This must be performed by an experienced specialty contractor.

Since the subgrade soils are generally sensitive to moisture, every effort should be made to provide adequate drainage across the site during construction, and to prevent ponding of runoff on the subgrade. These soils are also subject to erosion caused by runoff, and erosion control measures should be implemented where needed or required by local ordinances.

# Seismic Design Considerations

On-site natural soils generally consist of loose to dense granular soils. The on-site natural soils are considered to meet the criteria for Site Class D in accordance with Table 1615.1.1 of the International Building Code-2006.

# STORMWATER MANAGEMENT AREA CONSIDERATIONS

A stormwater management area is proposed for the northwest portion of the development. Borings B-22 through B-24 were performed, as requested by the client, for the purpose of evaluating the subsoils in these areas. The depth, type, and other design details of the stormwater management area were not known at time of this analysis. The subgrade soils encountered at these locations were classified in general accordance with the USDA textural soil classification system. Estimated infiltration rates for various soil types are shown. Table 2 of the <u>Site Evaluation for Stormwater</u> Infiltration (1002) document, which is published by the Wisconsin Department of Natural Resources Conservation Practice Standards, is shown below.

Soil Texture ¹	Design Infiltration Rate Without
Coarea cand or opproor (COS)	
Coarse sailu of coarser (COS)	0.00
Loamy coarse sand (LCOS)	3.60
Sand (S)	3.60
Loamy sand (LS)	1.63
Sandy loam (SL)	0.50
Loam (L)	0.24
Silt loam (Si, L)	0.13
Sandy clay loam (SCL)	0.11
Clay loam (CL)	0.03
Silty Clay loam (Si, CL)	0.04
Sandy clay (SC)	0.04
Silty clay (Si, C)	0.07
Clay (C)	0.07

¹Use sandy loam design infiltration for fine sand, loamy fine sand, very fine sand, and loamy fine sand soil textures.

NR-151 guidelines indicate infiltration rates shall be based on the least permeable soil horizon within 5 feet of the bottom elevation of the proposed infiltration system.

In general, the soils encountered at B-22 through B-24 consisted predominantly of silt loam, sandy loam, loam, fine sand, or loamy fine sand materials to the maximum depths explored. These soils have Table 2 estimated infiltration rates ranging from 0.13 to 0.5 inches per hour, which are less than 0.60 inches per hour. However, field verification testing of the actual infiltration rates is required under Step 5c of The Site Evaluation for Stormwater Infiltration documents, to confirm that these materials are exempt from the infiltration requirements of NR151.12(5)(c), under NR151.12(5)(c)6a.

Exceptions to the foregoing were intermittent layers of sand or gravelly sand. These materials have an estimated infiltration rate of 3.60 inches per hour based upon Table 2. This rate is greater than 0.6 inches per hour, and these soils are not exempt from the requirements of NR151.12(5)(c) under NR151.12(5)(c)6a. It should be noted that the groundwater level at B-22 through B-24 was at depths of about 10 to 15 feet (EL. 32.3 to EL 26.0±). As a result, dependent upon bottom elevations, areas of the site may be exempt or excluded under NR 151.12(5)(c)5e due to the presence of groundwater within 3 feet of the basin bottom.

The preceding infiltration rate estimates are intended only for use in preliminary planning. In-situ testing, such as with a double ring infiltrometer, along with test pits in other areas of the basins are recommended to allow more detailed evaluation of subsurface conditions, including groundwater levels, and to provide more representative infiltration rates to be used in the final basin design. It is recommended

that the bottom of the stormwater management area be observed by qualified geotechnical personnel at the time of construction to verify the soil types.

It must be recognized that actual infiltration rates will be somewhat variable depending upon the uniformity, in-place density, and/or grading of the subsoils below the individual basin or trench footprint. It should also be recognized that the performance of the basin could be affected by other factors such as densification by construction equipment and sedimentation. A maintenance program must be developed to address the removal of sedimentation and or organic materials should they develop. Additionally, it is recommended that the basin design be performed by an experienced civil engineering firm, and that thorough review of applicable codes (especially NR151) and regulations be performed. Proper design and construction of sidewalls and berms will also be essential for proper basin performance.

## Preliminary Liner and Embankment Design

It is understood that the proposed stormwater management area may be designed as a wet pond. As such, the placement of a properly designed clay liner is likely to be required. The soils encountered within B-22 through B-24 generally consisted of silt loam, sandy loam, or loamy fine sand materials. Thin layers of sandy clay to silty clay were present in areas of the site, at shallow depths. However, Atterberg Limits determination testing and grainsize analysis on samples obtained from B-1(0-2 feet), B-2 (0-2 feet), and B-6 (2-4 feet) found that these materials has liquid limits ranging from about 26 to 37; plasticity indices ranging from about 14 to 23; clay contents of about 12, 28,1, and 13.5 percent; and percent fines of about 22.7, 57, 25.1, respectively.

Soils used for clay liners must be relatively impermeable and are generally specified to have a hydraulic conductivity of 1x10⁻⁷ cm/sec or less. In general, experience has shown that soils which have 50% or more passing the No. 200 sieve, a clay content of 25% or more, a liquid limit of 20 or more, and a plasticity index of 12 or more, have the potential to exhibit hydraulic conductivity of 1x10" cm/sec when properly compacted. However, the above material properties are general guidelines. The hydraulic conductivity of a given material can vary significantly depending on its density/compaction level. In addition, the soils used for the embankment must also meet the requirements for the soil used for the clay liner. Field testing to verify proper compaction and hydraulic conductivity is recommended. Based upon the laboratory testing performed for this project, the on-site soils do not meet these general guidelines, and are therefore not considered suitable for use in constructing a clay liner. Importing of suitable clay materials will be necessary if construction of a clay liner is necessary.

The liner must be designed to resist lateral earth and water pressure, as well as outward migration that may occur, possibly through shrinkage or tension type cracks. If inlet and outlet structures are installed, they should be provided with splash blocks or other energy dissipation devices to prevent scouring. It is further recommended that all

liner and embankment construction be monitored by the soils engineer. Clay liner material and the soil used for the construction of the embankment must be placed in maximum 6 inch thick lifts, at moisture contents at or near optimum, and be compacted to at least 95 percent of the maximum dry density as determined by the Standard Proctor method (ASTM D698). The clay liner must be at least 24 inches in thickness and extend up the side of the embankment to an elevation above the planned high water level for the wet pond. Further, it is recommended that a keyway of like material used in the construction of the berm be placed beneath the embankment to inhibit outward movement of the berm structure.

#### PAVEMENT DESIGN RECOMMENDATIONS

Based upon the borings, the near surface pavement subgrade soils are anticipated to generally consist of sand or sandy clay. The following recommendations are based upon the poorer sandy clay soils. These cohesive soils have been assigned an estimated visual classification of A-6 by the AASHTO soil classification method. They are generally rated as poor for pavement subgrade support due to moderate to high frost susceptibility, poor drainage characteristics, and high susceptibility to strength loss when exposed to free water. Provided that the subgrade soils are prepared as outlined in the *Site Preparation* section of this report, the in-place subgrade soils and any new structural fill can be used for standard flexible or rigid pavement construction.

Analysis of the visual soil classification and SCS soils survey information has been made in determining pertinent subgrade design coefficients as described in the Wisconsin Soils Manual for Pavement Design. Based on the soils encountered, and with proper subgrade preparation and drainage, the following pavement subgrade design parameters are recommended for the pavement section design. However, if soils with support characteristics different from the sandy clay materials are encountered or are used to raise grades in new pavement areas, revised coefficients will need to be provided.

#### PAVEMENT SUBGRADE DESIGN COEFFICIENTS

AASHTO Soil Classification	A-6
Design Frost Index	F-3
Design Group Index	14
Soil Support Value	4.0
Estimated Subgrade Modulus (k)	150 pci

The subject site is located in an area that experiences annual freezing cycles and the subgrade soils encountered have been classified as highly susceptible to frost action when free water is present. In order to reduce the potential for frost action, it will be necessary to control surface runoff and water seepage as complete removal and

replacement of the frost susceptible subgrade soils is not considered economically feasible. It is recommended that underdrains be placed within the subgrade, just below the granular base, to help reduce the potential for trapping water within the aggregate base layer. At a minimum, this should consist of installing 3 to 4 drain tiles extending radially outward, 20 feet from each interior catch basin. In addition, drain tiles should extend along curb lines, 20 feet up the slope from curb inlets. The drain tile should be directly connected to the storm sewer manholes or catch basins. The drain tile should consist of 4 inch diameter perforated PVC pipe placed beneath the base layer, extending at least 8 inches into the subgrade. The pipe should be surrounded by 1 inch size clean stone, with the pipe and stone being wrapped with a geotextile filter fabric to reduce the potential of soils from migrating into and obstructing the pipe. It is also recommended that roof drains be connected to the stormwater collection system to minimize the potential for this water to enter the base and subgrade.

## GENERAL COMMENTS

This geotechnical exploration and foundation analysis has been prepared to aid in the evaluation of the foundation conditions on this site. The recommendations presented herein are based on the available soil information and the design information provided. Any changes in the design information or building locations should be brought to the attention of the soils engineer to determine if modifications in the recommendations are required. The final design plans and specifications should also be reviewed by the soils engineer to determine that the recommendations presented herein have been interpreted and implemented as intended.

This geotechnical study has been conducted in a manner consistent with that level of care ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions. The findings, recommendations and opinions contained herein have been promulgated in accordance with generally accepted practice in the fields of foundation engineering, soils mechanics, and engineering geology. No other representations, expressed or implied, and no warranty or guarantee is included or intended in this report.

It is recommended that the earthwork and foundation operations be monitored by the soils engineer, to test and evaluate the bearing capacities, and the selection, placement and compaction of controlled fills.

# APPENDIX

er ditaliada availa

en en distanti data da







Location: 2001 South Prairie Avenue Waukesha, WI Project No.: 7-83087 Drill Date: July 18, 2008 Drilled by: Steve Gonyer Logged by: Nick Ellison

De	pth Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	MC	PID	Bemarks
Surfa	nce/Elev. (ft)	Ground Surface Elevation: 52.1	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	
-	-	10"± Dark brown Sandy CLAY, moist (Topsoil)							_
1	51.1		1-AU	-	- 1	·		•	-'
	-	Brown Sandy CLAY, trace gravel, moist				<b>.</b>	Ì		·
2	50, (	арин на на даруу жи на кака жана жана жана кака кака кака к						····	
3	49.1		2-55	8			4		_
- 1	-								- -
<u>-</u> ه	48. (								
	-								•
5 -	47.1		3-88		-	-	4	*	
6	46.1	· · · ·	ļ						
-	4								•
7-4	45.1		4-SS	11	-	-	3	-	ר ^י
1	1								
	44.1								
9	43.1	Light brown to brown SAND, trace to some gravel, moist	5-SS	13	-	-	3	-	-
-	-								ل
10	42.1 —			• •					
	41.1		8.99	10	_		а		_
	-		0.00	16			Ŭ		 -
12	40.1								—
	-								· 4
13	39.1		7-SS	14	-	-	3	-	ı <b>ت</b>
14	38.1								-
4	4								-
15	37.1 —		8-SS	19	-	-	3	-	
16	36.1								ر_ ۱۱
		End of Boring: 16'							)
Notes:									
				-					
Water I e	vel / Caving (	Observations:	Additional	Comm	ents:				
Wa	ater Level _{Ouring}	i Drilling: dry	*N value m	ay be el	evated	due to	cobbles	and bo	ulders
Wate	er Level _{Upon Cor}	nptelion: dry							
Ca	aved at _{Upon Cor}	npletion: $6 \pm ft$ (El. 46.1±)	Boring Lo	cation (	Offset:	none			



#### Location: 2001 South Prairie Avenue Waukesha, WI

Project No.: 7-83087 Drill Date: July 18, 2008 Drilled by: Steve Gonyer Logged by: Nick Ellison

De	pth Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	мс	PID	Remarks
Sun	ace/clev. (n)	Ground Surface Elevation: 52.7	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	<u> </u>
		9"± Dark Brown Sandy CLAY, moist (Topsoil)							
1 i	51.7		1-AU	-	-	-		•	
- III -	-								
2-	50.7	Reddish Brown Silty CLAY, little sand, to Sandy CLAY, moist					<u> </u>		
-	1 1		0.00						-
3	49.7 —		2-55	0	•	-	1 1 6	-	
- -	48.7								
-									-
5	47.7		3-SS	15	-	-	5	-	poor recovery
- 1		Brown SAND, little to some gravel, moist							-
6—	46,7					<u> </u>	<b>.</b> .		—
-							_		
7	45.7		4-SS	15	•	•	5	·	
	-								_
l ° ]									
9_	43.7		5-SS	10	-	-	3		_
-	Ļ								-
10 -	42.7								
-	-								-
11	41.7 —	Light brown SAND, trace gravel, moist	6-SS	10	-	-	3	•	
-	4								-
12	40.7 —	· · · ·							
13	39 7 —		7-88	17			4		
	_								-
14	38.7							·····	
- 1	4		1						-
15 —	37.7 -	Light brown fine SAND, moist	8-SS	15	-	•	6	•	
16	36.7								-
		End of Boring: 16'							
Notes:									]
								÷	
				-					
Water Le	evel / Caving (	Observations:	Additional	Comme	ents:	ato an Ali	. ماما- ا	نبالجيس م	
W	ater Level _{During}	g Onling: City	nv value ma	ay be el	evated	que to	CODDIES	and bo	uiuers
Wate	Br Level Upon Cor	mpletion: City	Porioalo	nation (	)ffnati	0000			
C	aved at upon Cor	mpletton: 0 ± 11 (C1. 44./±)	DUTING LO	Gauon (	MSBC	none			
									1



Location: 2001 South Prairie Avenue Waukesha, WI Project No.: 7-83087 Drill Date: July 18, 2008 Drilled by: Steve Gonyer Logged by: Nick Ellison

De Surf	pth Below ace/Elev. (ft)	VISUAL SOIL CLASSIFICATION Ground Surface Elevation: 51.0	Sample No.	N (bpf)	Qp (tsf)	Qu (tsf)	MC (%)	PID (ppm)	Remarks
-	-	5"± Dark brown Silty SAND, moist (Topsoil)	1-AU	-		-	10	-	
-	50.0	Brown Sandy CLAY, moist					×		-
2	49.0			-					
3	48.0		2-SS	16	•	•	4	-	
4	47.0	Light brown SAND, trace to little gravel, moist					,,,,		
5 —	46.0 -								اہت 
6	45.0	Eval of Deview 21/1	3-SS	13	-	-	4	-	
		End of Boring: 61/2							
Water Le	evel / Caving	Observations:	Additional	Comme	ents:				
W	ater Level _{Dunn}	a Drilling: dry	N value ma	ay be el	evated	due to (	cobbles	and bou	ulders
Wate C	er Level _{Upon Co} aved at _{Upon Co}	npletion: dry npletion: 3 ± ft (El. 48±)	Boring Lo	cation (	Offset: ı	none			



Location: 2001 South Prairie Avenue Waukesha, WI

Project No.: 7-83087 Drill Date: July 18, 2008 Drilled by: Steve Gonyer Logged by: Nick Ellison

Depth Below VISUAL SOIL CLASSIFICATION Sample N Qp Qu MC PID				PID	Remarks				
Sum	ice/Elev. (ft)	Ground Surface Elevation: 44.5	<u>No.</u>	(bpf)	(ts!)	(tsf)	(%)	(ppm)	
1	43.5	9°± Crushed CONCRETE, damp (FILL)	1-AU	-	•	-	7		
-	-	15"± Dark brown Sandy CLAY, moist			•				
2	42.5 -								
3 —	41.6		2-55	16			3		•
4	40,5 —			1.	· • • • • • • • • • • • • • • • • • • •				
5	39.5								
-			3.99	12			А		
			3-30	16					_
7-	37.5								-
8	36.5		4.00	10			4		-
	35.5		4-35	19				-	•
	34.5								r
	-			- 10					
	33.5	Linké krown CAND, kross is little struct, domo to wat	5-88	13	-	-	2	-	-
12-	32.5	Light brown SAND, trace to little graves, damp to wet							-
13-	31.5 -								-
14	30.5				l				<u> </u>
									_
	29.5					_			
16-	28.5		6-SS	11	•	-	15	·	-
17-	27.5								-
18	26.5				ĺ				-
	25.5								-
∥ "¬	25.5								
20 -	24.5	· · · · · ·							-
21	23.5 🕳		7-SS	9	-	-	26	-	_
		End of Boring: 211/2"							
Notes:									
Water Le	vel / Caving (	Observations:	Additional	Comm	ents:				
Wa	ater Level During	_{J Colling} : 14 ± ft (El. 30.5±) ⊻	'N value m	ay be e	levated	due to	cobble	s and bo	ulders
Wate	r Level _{Upan Cor}	mpletion: dry	Dauber I.	andl 1	<b>\</b> 4↓				
	aved at _{Upon Cor}	$n_{pletion}$ : 11 ± ft (El. 33.5±)	Boung ro	cation (	unset: I	none			



Location: 2001 South Prairie Avenue Waukesha, WI Project No.: 7-83087 Drill Date: July 17, 2008 Drilled by: Pete Rotaru Logged by: Toshi White

De	pth Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	MC	PID	Remarks
Surfa	ice/Elev. (ft)	Ground Surface Elevation: 44.6	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	
<b> </b> -		Note A	1-AU	•	-	-	2	-	_
2	43.6 — - 42.6 —								
3	41.5 — -		2-SS	9	-	-	1	÷	
5	40.6 								
6	- 38.6		3-88	9	-	-	2	•	-
7-	37.6	Light brown SAND, trace to little gravel, damp to moist							
8	36.6		4-SS	10		-	2	-	!i
9	35.6 34.6								
11			5-SS	15	•		3	-	, ا ب. بينييو
12	32.6								J
13	31.6								
14	30.6								v J
16	29.0		6-SS	9	<u>.</u>		14		
_17	27.6	Brown coarse SAND, little to with gravel, wet							
18 -	26.6								
19 -	25.6								
20 -	24.6		7.00	10		_,	10		
21	23.6		7-85	IV	Ţ.		10		
		End of Boring: 211/2	· · · · · · · · · · · · · · · · · · ·	~~~ <u>·</u>	· · · ·				
Notes:	Note A : 3*± 6*±	ASPHALT Crushed STONE, moist (Aggregate Base)							
Water Le Water Water	evel / Caving ( ater Level _{During}	Dbservations: $1 \text{ Dailing:}  15 \pm \text{ft} (El. 29.6\pm) \qquad \underline{V}$	Additional *N value m	Comm ay be e	i <b>ents:</b> levatec	l due to	cobble	s and bo	builders
Ci	Caved at Upon Completion: 10 ± ft (EJ. 34.6±) Boring Location Offset: none								



Location: 2001 South Prairie Avenue Waukesha, WI

00070

12422142

1.4

Project No.: 7-83087 Drill Date: July 18, 2008 **Drilled by: Steve Gonyer** Logged by: Nick Ellison

De	pth Below ace/Elev. (ft)	VISUAL SOIL CLASSIFICATION	Sample	N (hpf)	Qp (tef)	Qu (tef)	MC (%)	P(D (nnm)	Remarks
			1 110.		((3))		<u> </u>		
	52.0	2"± Dark brown Clayey SAND, moist (Topsoil)	1-AU	-		-	9		-
-	- 510	Brown Clavey SAND/Sandy CLAY, with gravel mojet		,					-
-	51.0	BIOWI Glayby SAND/Sandy OLA I, Will gravel, molar		_					-
3	50.0		2-SS	7	•	-		•	-
4	49.0 —	Light brown Silty fine SAND, very moist							
5 —	48.0 -		3-SS	10	-	-	10		-
6	47.0								
7_	46.0		4 <b>.</b> SS	17	-	-	4	-	
8	45.0								-
9 -	44.0		5-SS	15		-	3	-	-
10 —	43.0 -								
11	42.0	Light brown SAND, trace to little gravel, damp to moist	6-88	12	-	-	3	-	-
12	41.0								-
13	40.0		7-SS	17		-	3		
14	39.0 —								
15 -	38.0 -		8-SS	15	-	-	2	-	-
16	37.0	End of Boring: 16'							
Notes:		<u> </u>							
Water Lo	evel / Caving	Observations:	Additional	Comm	ents:				
W	ater Level _{Durin}	g Drilling: dry	*N value mi	ay be el	evaled	due to	cobbles	and bo	ulders
Wate	er Level _{Upon Co}	mpletion: dry	<u> </u>						
C	aved at _{Upon Co}	mplation: 8 ± ft (El. 45±)	Boring Lo	cation (	unset:	none			



Location: 2001 South Prairie Avenue Waukesha, WI Project No.: 7-83087 Drill Date: July 17, 2008 Drilled by: Pete Rotaru Logged by: Toshi White

De Surfa	pth Below ice/Elev. (ft)	VISUAL SOIL CLASSIFICATION	Sample	N	Gp (tot)	Qu	MC (%)	PID	Remarks
					((3))		<u>  (70)</u>		
-	-	3"± Dark brown Silty SAND, moist (Topsoil)	1-AU	-	-	-	10	-	-
1	44.4						! 		interes.
-	-								-
2	43.4			1					
-	-		ļ						-
3	42.4		ļ						
	4		2-SS	16	-		2		-
4	41.4	Light brown SAND, trace gravel, moist							
	_				1			:	-
	40.4								
	••••		·						
			0.00						1
	38,4		3-55	8	-	-	3	-	
		End of Boring: 6½					·	·	
Notes:									
									1
Water Lev	vel / Caving (	Observations:	Additional	Comme	nts:				
Water Water	ter Level _{During}	Drilling: Cry	'N value ma	y be ele	evated	due to c	obbles	and bou	iders
Ca	ved at Upon Con	previous $2 \pm ft$ (El. 43.4±)	Boring Loo	cation C	)ffset: n	one			



Location: 2001 South Prairie Avenue Waukesha, WI

Project No.: 7-83087 Drill Date: July 18, 2008 Drilled by: Steve Gonyer Logged by: Nick Ellison

De	pth Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	мс	PID	Remarks
Surfa	ace/E(ev. (ft)	Ground Surface Elevation: 43.9	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	
-	42 9	7"± Gray crushed STONE, molst (FILL)	1-AU	-	•	-	9	-	•
2	41.9	Brown Sandy CLAY, moist							
3	40.9		2-SS	17	-	•	4	-	
4	39.9								
5 -	38.9 -	·							_
6			3-SS	10	-	-	4	-	
7	36,9 —								_
8	35.9						-		_
9	34.9		4.88	14	-	•			_
10 _	33.9								· •
- 11	32.9		5-SS	12	-	•	7	•	_
12	31.9	Light brown SAND, trace gravel, with a fine sand seam at 10 $\pm$			(				
- 13	30.9	feet, moist to wet							⊻ _
- 14	29.9								
15	28.9								
	27.0		6.55	a			20		-
	26.0								-
<u>ا</u> "	20.0								-
	20.9								~
-	24.9								
20 -	23.9 -								
21	22.9		7-SS	11	· ]	•	22	-	
kladaa.		End of Boring: 21½							
NOTES;									
Water Le	vel / Caving (	Observations:	Additional	Comm	ents:				
Wa	ater Level _{During}	$_{\text{Dotiling}}$ : 13 ± ft (El. 30.9±) $\underline{V}$	"N value m	ay be e	levated	due to	cobble	s and bo	ulders
Wate	er Level _{Upon Cor}	mpletion: dry							
C	aved at Upon Cor	$n_{pletion}$ : 10 ± ft (El. 33.9±)	Boring Lo	cation C	Offset: r	none			



Location: 2001 South Prairie Avenue Waukesha, WI Project No.: 7-83087 Drill Date: July 17, 2008 Drilled by: Pete Rotaru Logged by: Toshi White

De	pth Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	MC	PID	Bemarks
Surfa	ice/Elev. (ft)	Ground Surface Elevation: 44.8	No,	(bpf)	(tsf)	(tsf)	(%)	(ppm)	
- j	-	Note A	1-AU	-	-	-	3	-	i -
	43,8								
2	42.8								
з—	41.8						<u> </u>		
	40.8		2.55	13			2	· · ·	
									-
	39.8 -								-
6-	38.8		3-SS	8	-	-	3	-	
7	37.8 —								_
8_1	ہ ــــــــــــــــــــــــــــــــــــ	· · · ·							••• •••••••
-			4-SS	9	•		2	-	نے
9	35.8								
10 -	34.8 —								
11	33.8	Light brown SAND, trace gravel, moist to wet	5-SS	8	-	-	2	•	
12	32.8			- 1					
4	-			Ì					-
-	31.8								
14	30.8								
15 -	29.8 —		· [						¥
16	28.8		6-SS	10	-	-	20	-	·
17	27.8					·			_
	-		4						-
18	26.8								_
19	25.8								
20 -	24.8 -								
21	23.8	Brown SAND and GRAVEL, wet	7-SS	10	-	-	14	-	_
ł	l.	End of Boring: 21½'						1	
Notes:									
	Note A : 3"±	ASPHALT							
	8"±	Gray crushed STONE, moist (Aggregate Base)							
									1
Water Le	vel / Caving (	Dbservations:	Additional	Comm	ents:	<u></u>			
Wa	iter Level _{Ouring}	, Drilling: 15 ± ft (El. 29.8±) ⊻	*N value m	ay be e	levated	due to	cobble	s and bo	ulders
Wate	r Level _{Upon Cor}	npletion: dry							
Ca	aved at Upon Cor	npletion: $11 \pm ft$ (El. 33.8±)	Boring Lo	cation (	Offset: I	none			
									1



midwest engineering services, inc.

#### Project: Proposed Weldall Manufacturing Addition

Location: 2001 South Prairie Avenue Waukesha, WI Project No.: 7-83087 Drill Date: July 17, 2008 Drilled by: Pete Rotaru Logged by: Toshi White

De Surfa	pih Below ace/Elev. (fi)	VISUAL SOIL CLASSIFICATION Ground Surface Elevation: 44.7	Sample No.	N (bpf)	Qp (tsf)	Qu (tsf)	MC (%)	PID (ppm)	Remarks
		6"± Dark brown Silty SAND, moist (Topsoll)							
	-		1-AU		-	-	10	-	•
	43.7 —	Brown Silty CLAY, moist							
	-								•
2 <b></b>	42.7								
-	-								•
3	41.7								
-	-		2-SS	9	-	-	2	-	-
4	40.7	Light brown SAND, trace gravel, moist							in sector
-	-	- ,							-
5 -	39.7		-						-
-	-								-
6	38.7		3-SS	13	-	-	3	- '	
	<u> </u>	End of Boring: 6½'						ł	
Notes:									
				-					
Water Le [.] Wa	vel / Caving C ter Level During	Deservations:	Additional ( 'N value ma	Comme ly be ele	ents: evated :	due to c	obbles	and bou	Iders
Wate	r Level _{Upon Con}	ptetion: dry							
Ca	ived at _{Upon Con}	pletion: 3 ± ft (El. 41.7±)	Boring Loo	cation C	Offset: r	none			
		·							



Location: 2001 South Prairie Avenue Waukesha, WI Project No.: 7-83087 Drill Date: July 18, 2008 Drilled by: Steve Gonyer Logged by: Nick Ellison

Depth B	Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	мс	PID	Bemarke
Surface/E	Elev. (ft)	Ground Surface Elevation: 43.3	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	
	42.3	12"± Crushed CONCRETE, moist (FILL)	1-AU	-	-	•	8		
2	41,3								-
			2-SS	15	-		3	-	
5 _ 3	39.3 - 38.3 -				-				
6—	37.3		3-SS	12		•	3	-	
7_	36.3								
8	35.3		4-SS	7	-	-	7		-  ,
9 -	34.3								-
	3.3 —	Light brown SAND trace to little group with a fine alls, and							
-	32.3	seam at 15± feet, moist	5-55	8			5		
	20.2								
-	20.3								v -
15 28	3.3								 
	27.3		6-55				26		_
17	26.3								_
	<b>-</b> 25.3 <b></b>						ĺ		
19-	24.3								
20 - 23.	.3 -								1
21	22.3		7-SS	9	-	•	23	-	-
		End of Boring: 21½'						<u>.</u>	
Notes:									
Water Level / (	Caving O	bservations:	Additional	Comm	ents:	ماريم الم			.1.al.a
Water Leve	Over During D	$\frac{\mathbf{V}}{\mathbf{V}}$	IN VAIUE MA	ay de el	evated	uue to	CODDIES	and DOI	SIBOIL
Caved a	at Upon Comp	letion: 9 ± ft (El. 34.3±)	Boring Loo Reaso	ation O on for O	ffset: 5 ffset: e	i± feet e xisting	əast equipm	ent	
									·



Location: 2001 South Prairie Avenue Waukesha, WI

Project No.: 7-83087 Drill Date: July 17, 2008 Drilled by: Pete Rotaru Logged by: Toshi White

	De	pth Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	MC	PID	Bemarks
	Surf	ace/Elev. (ft)	Ground Surface Elevation: 44.9	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	
	• 1 —		Note A	1-AU	•	-		2	-	-
ĺ	-							l		-
	2	42.9	1	· ·			í			
	3—	41.9		2.00	22			7		
	4	40.9		2-00	~~~			<u> </u>		
	5 —	39.9 -								
	6	38.9 —		3-SS	14	-		2		••• •••••••
	7	- 37.9—								
	8									-
	۔ ا_و	35.9		4-SS	18	-		2	-	_
	10 -	34.9 -								
				5-SS	15	-		2	-	
	12	32.9 —	Light brown SAND, trace to some graver, moist							- 
	13	- 31,9								
	14	- 30.9				ĺ				
	15 -	29.9								⊻ _
	16	- 28.9 —		6-SS	7		-	20		
	17-	- 27.9								
	18	- 26.9								-
	19	- 25.9								-
	20 <b>–</b>	24.9 —								L.
	21	23.9		7-SS	17	-	-	20	~	
			End of Boring: 211/2		_					
N	otes:		n an							
		Note A ; 4*±	ASPHALT							
		8"±	: Gray crushed STONE, moist (Aggregate Base)							
L										
W	ater Le	vel / Caving	Observations:	Additional	Comm	ents:				
l	Wa	ater Level _{Durin}	g Drilling: 15 ± ft (El. 29.9±) <u>V</u>	N value m	ay be e	levated	due to	copple	s and bo	uiders
	vvate	r Level _{Upon Co} avert at	$\frac{\text{mpletion}}{10 + \text{ft}} (E  34.9+)$	Boring Lo	nation (	iffeet :	2008			
	ψž	uveu au Upon Co	mpletion, TO III (LI, O4.3I)			/1301. 1	10(10)			
				·						
L										



Location: 2001 South Prairie Avenue Waukesha, WI Project No.: 7-83087 Drill Date: July 17, 2008 Drilled by: Pete Rotaru Logged by: Toshi White

Dr Suri	epth Below face/Elev. (ft)	VISUAL SOIL CLASSIFICATION Ground Surface Elevation: 43.9	Sample No.	N (bpf)	Qp (tsf)	Qu (tsf)	MC (%)	PID (ppm)	Remarks
		3"± Brown Silty SAND, trace gravel, molst (Topsoli)	4 4 1 1				-	<del>لئے۔ <u>نین</u>در</del>	
		L	1-AU	•	•	-	5	-	-
	42.9								
	410								-
	] 41.9	,							
3-	- 406								
		Light brown SAND, moist	2-SS	6			5	-	-
4	39.9								_
-	-								-
5	38.9								
-	-								_
6-	37.9		3-SS	9		-	5	-	_
		End of Boring; 6½'							
Notes:									
									1
Water L	evel / Caving (	Observations:	Additional	Comme	ents:	dua 4+		عبا فمجم	idaa
W teW	ater Level _{During} er Level	i Dritting: ary	in value ma	ay be el	evated	aue to o	CODDIes	and bol	liaers
C	aved at Upon Cor	npielion: $2 \pm (l (El. 41.9\pm))$	Boring Lo	cation C	Offset: 1	none			



# Location: 2001 South Prairie Avenue Waukesha, WI

Project No.: 7-83087 Drill Date: July 18, 2007 Drilled by: Steve Gonyer Logged by: Nick Ellison

Der	oth Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	мс	PID	Bemarks
Surfa	ce/Elev. (ft)	Ground Surface Elevation: 43.3	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	
	-	12"± Crushed CONCRETE, moist (FILL)	1-AU	•	•	-	10	-	· ·
∥ '⊐	42,3					1	1		
2-	41.3	Brown Sandy CLAY, very moist				Í.			
3-	40.3							<u> </u>	
L, I	39.3		2-SS	15	•	-	4	· ·	
	-								
	38.3		ļ						-
6	37.3		3.88	14	-	-	4	-	
7	36.3								
	35.3	Light brown SAND, trace gravel, with a fine sand seam at 8+							
	-	feet, moist	4-SS	14	-	-	6	-	-
9	34.3								
10 -	33.3 —								
11	32.3		5-SS	14	•	-	3	•	-
	31.3					(			
	-								v -
13-	30.3								
14	29.3 —								
15 -	28.3								
16	27.3	Brown Silty fine SAND, wet	6-SS	6		-	21		-
									-
	26.3								
18	25.3	· · · · · · · · · · · · · · · · · · ·							_
19 —	24.3								–
20	23.3	Brown SAND, wet							_
21	22.3		7-55	6			27		
		End of Doving: 011/1							
Notaci									
NOLES:									
			A 1.442						
Water Le	vel / Caving I	Observations:	Additional *N value m	Comm	ients:	l due to	cobble	s and he	ulders
Wate	r Level una on			uy 00 0	il s s u le u	1 446 10	332010		
Ca	aved at unon Co	$\frac{1}{12 \pm 11} = \frac{1}{12 \pm 11} $	Boring Lo	cation (	Offset:	4± leet	south		
	0001.00	• • •	Reas	ion for C	Offset: a	automo	biles		
									E



Location: 2001 South Prairie Avenue Waukesha, WI Project No.: 7-83087 Drill Date: July 17, 2008 Drilled by: Pete Rotaru Logged by: Toshi White

De	pth Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	MC	PID	Bemarks
Surf	ice/Elev. (ft)	Ground Surface Elevation: 44.7	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	
-	437	Note A	1-AU	-	+	-	3	-	
'-									
2	42.7								-
3	41.7		0.00	14					
4	40.7		2.33	14	-			· ·	_
5 -	39.7								اب
- T	-								וך
	38.7		3.22		•	*	20		<u> </u>
	37.7								
8	36.7 —								1
9_	35.7		4-SS	17	•	•	6		
	24 7 ]								
		Light brown DAND with a citizative fine courd accord to fact							
11	33.7	Light brown SAND, with a silvisity line sand seam at $5\pm$ left, moist to wet	5-SS	13	·		5		
12	32.7								
13	31.7								_
14	30.7			[				ŀ	
-									<u>v</u> ll
									-
16	28.7		6-SS	7	-	•	21	-	1
17	27.7								<b>ا</b> لـــ
18	26.7			ĺ					
19	25.7						Ì		
20 1	24.7								`
21	23.7		7,99	ß			21		
		End of Boring: 211/4	1.00				21	<u> </u>	
Notes:									
	Note A : 4"±	ASPHALT							
	7"±	Gray crushed STONE, moist (Aggregate Base)							
Water Le	vel / Caving (	Observations:	Additional	Comm	ents:				
Wa	ater Level During	, Drilling: 15 ± ft (El. 29.7±) ⊻	*N value m	ay be e	levated	due to	cobbles	s and bo	ulders
Wate	r Level _{Upon Con}	npletion: dry							ļ
Ci	aved at _{Upon Con}	notetion: $12 \pm ft$ (EI, $32.7\pm)$ .	Boring Lo	cation C	Offset:				
			Reas	on for C	Offset:				



Location: 2001 South Prairie Avenue Waukesha, WI

Project No.: 7-83087 Drill Date: July 17, 2008 Drilled by: Pete Rotaru Logged by: Toshi White

De Surf	epth Below ace/Elev. (ft)	VISUAL SOIL CLASSIFICATION Ground Surface Elevation: 45.4	Sample No.	N (bpf)	Qp (tsf)	Qu (tsf)	MC (%)	PID (ppm)	Remarks
		-14"± A\$PHALT	1-AU	-	-		7	-	-
ι τ	44.4	12"± Gray crushed STONE, moist (Aggregate Base)							_
2	43.4								_
-	_								-
3	42.4		2.55	15			3		
4	41.4 —	Brown medium to coarse SAND, trace to little gravel, moist							_
-	-		-						-
	40,4 -					-			-
· 6 —	39.4 —		3-SS	9	-	-	5	-	
		End of Boring: 61/21							
	· ·								
Nater Le	vel / Caving C	bservations:	Additional	Comme	ents:	dua to r	ohblee	and boy	liders
Wate	r Level _{Upon} Corr aved at _{Upon} Corr	pletion: $dry$ pletion: $3 \pm ft$ (El. 42.4 $\pm$ )	Boring Loo	cation C	Offset: r	none			
			,						



## Location: 2001 South Prairie Avenue Waukesha, WI

Project No.: 7-83087 Drill Date: July 18, 2008 Drilled by: Steve Gonyer Logged by: Nick Ellison

De Surfa	pth Below ace/Elev. (ft)	VISUAL SOIL CLASSIFICATION	Sample	N (hpt)	Qp (tof)	Qu	MC	PID	Remarks
			1-AU	(upi) -	- ((\$1)	<u>  ((si)</u>   -	(%) 7	[(mqq)]	
'	42.4		-						<u>ــــــــــــــــــــــــــــــــــــ</u>
2_	41.4	Brown Sandy CLAY, moist							
3	40.4		2-SS	17		•	16		
4	39.4 <b></b>								
5 -	38.4								
6	37.4		3-SS	15	-	-	8	-	
7	36.4								
8	35.4 — 		4-SS	16	-		14		
9	34.4								 
10 -	33.4 -								
11	32.4		5-SS	15	-	-	5	-	
12	31.4	Light brown SAND, with line sand seams at 3±, 8±, and 15± feet, moist to wet	ĺ						
13 -	30.4								v 1
	29.4 —								
15 -	28.4 –								-
16	27.4		· 6-SS	9	-	-	24	-	
17	26.4								_
18	25.4								
19	24.4								_
20 -	23.4								
21	22.4	· · · ·	7-SS	7	-	-	25	-	
Notos	·····	End of Boring: 21½'					·····		
NOLES,	Note A: 4"±	ASPHALT							
	14":	± Crushed CONCRETE (Aggregate Base)							
			A 1 M-1						
water Le Wa	ver / Caving C ller Level _{During}	Diservations: Drilling: 14 ± ft (El. 29.4±) V	Additional *N value ma	comm ay be el	ents: evated	due to	cobbles	and bo	ulders
Wate	r Level Upon Con	notetion: dry	<b>.</b>						
Ca	aved at _{Upon Con}	npietion: $14 \pm \text{ft}$ (El. 29.4±)	Boring Loc	cation C	)ffset: r	юпе			



midwest engineering services, inc.

# Project: Proposed Weidall Manufacturing Addition

Location: 2001 South Prairie Avenue Waukesha, WI

Project No.: 7-83087 Drill Date: July 17, 2008 Drilled by: Pete Rotaru Logged by: Toshi White

De	pth Below	VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	MC	PID	Bemarke
Surf	ace/Elev. (ft)	Ground Surface Elevation: 44.6	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	
-	-	Note A	1-AU	-	-	-	2	•	
'-									-
2	42.6								-
3-	41.6		2.88	17			3	<u>├</u> (	
4-	40.6	Light brown SAND, trace gravel, moist to wet	2-00						
5	39.6								
6-	38.6		3-SS	9	-	-	3	-	
	37.6								-
	-								-
8-	36.6	Light brown fine SAND, moist	4-SS	8			11	-	
9	35.6								
10 —	34.6								
11	33.6 —		5-SS	9	-	•	3	-	
12	32,6								
13	31.6								-
-	-								
¹⁴	30.0								v -
	29.6 —	Draws CAND, know around model to wat							-
16	28.6	Brown SAIND, trace gravel, moist to wet	6-SS	в	•	-	24	-	_
17	27.6								
18	26.6								_
	- 25.6								<u> </u>
20 -	24.6								
	24.0		7-99	13			21		-
	20.0	End of Poring: 2114		,0	]		-		
Notes		End of Bornig. 2172							
101001	Note A: 4"±	ASPHALT			• *				
	8"±	Gray crushed STONE, moist (Aggregate Base)							
Water Le	vel / Caving (	Observations:	Additional	Comm	ents:			<u> </u>	
Wa	ater Level _{During}	Drilling: 15 ± ft (El. 29.6±)	*N value m	ay be e	levated	l due to	copple	s and bo	ulders
Wate	er Level _{Upon Cor}	npletion: dry							
C	aved at Upon Cor	n plelion; 12 ± ft (E1. 32.6±)	Boring Lo	cation (	JIISEt:	noné			

Lines of demarcation represent approximate boundaries between soil types. Variations may occur between sampling intervals and between boring locations, and the transition may be gradual.

.



Location: 2001 South Prairie Avenue Waukesha, WI Project No.: 7-83087 Drill Date: July 17, 2008 Drilled by: Pete Rotaru Logged by: Toshi White

C Su	epth Below face/Elev. (ft)	VISUAL SOIL CLASSIFICATION Ground Surface Elevation: 48.2	Sample No.	N (bpf)	Qp (tsf)	Qu (tsf)	MC (%)	PID (ppm)	Remarks
		8"± Dark brown Clayey SILT, little sand, moist (Topsoil)	1-AU				8		
1-	47.2								
2-									-
	-								
3-	45.2								
4	- 44.2	Light brown SAND, trace to little gravel, with fine sand seams, moist	2-SS	20	-	•	4	-	
									4
5	43.2 -								_
6	42.2		3-55	20			9		
		End of Boring: 614	0.00						
Mataa									
Nator	aval / Caving (	Ibearvations	Additional	^	nto.	····			
W	ater Level During	Drilling: dry	"N value ma	y be ele	evated (	due to c	obbles	and bou	Iders
Wate	er Level _{Upon Con}	_{ppletian} ; dry							
C	aved at _{Upon Con}	pletion: 3 ± ft (El. 45.2±)	Boring Loo Rease	cation C on for C	)ffset: 5 )ffset: s	5± leet r prinkler	rorth, 5 r systen	± feet we n	est



# Location: 2001 South Prairie Avenue Waukesha, WI

Project No.: 7-83087 Drill Date: July 17, 2008 **Drilled by: Pete Rotaru** Logged by: Toshi White

De Surfa	pth Below ace/Elev, (ft)	VISUAL SOIL CLASSIFICATION Ground Surface Elevation: 43.2	Sample No.	N (bpf)	Qp (tsf)	Qu (tsf)	MC (%)	Sample N Qp Qu MC PID   No. (bpf) (tsf) (tsf) (%) (ppm)							
-	40.0	Note A	1-AU	-	-		3		· · · · · · · · · · · · · · · · · · ·						
	42.2		-												
2	41.2														
³ -	40.2 -		2-SS	18	-	•	2	-							
	39.2	Brown SAND, trace gravel, damp to moist							-						
5 -	38.2 -														
6	37.2		3-SS	16	-		3								
7	36,2														
8	35.2		4-SS	11		-	16		-						
9	34.2	Light brown and gray mottled Silty fine SAND, moist													
10 -	33.2														
11	32.2 —		5-88	6	-	-	8	-	-						
12	31.2								_						
13	30.2														
14	29.2								_						
15 _	28.2 -	Brown SAND, trace gravel, moist to wet							<u>v</u> _						
16	27.2		6-SS	8		-	22		-						
17	26,2								-						
- 18	25.2														
10	24.2								-						
	22 2 T														
20	23.2	Brown Silty fine SAND, wet	7-SS	12			23								
		End of Boring: 21½'					·								
Notes:															
	Note A : 4"±	+ ASPHALT "+ Grav crushed STONE, moist (Accreciate Base)	•												
	,0														
Water Le	vel / Caving	Observations:	Additional	Comm	ents:										
W	ater Level _{Durin}	ng Drilling: 15 ± ft (El. 28.2±) 💆	*N value m	ay be e	levated	l due to	cobble	s and bo	ulders						
Wate	er Level _{Upon Co}	$m_{\text{plelion}}$ : dry (FI 31 2+)	Borino Lo	cation (	Offset:	30+ fee	t south								
	aveu al Upon Co	mpletion (C + II (CII O (CC))	Reas	ion for (	Offset:	cobbles									



# Location: 2001 South Prairie Avenue Waukesha, WI

Project No.: 7-83087 Drill Date: July 18, 2008 Drilled by: Steve Gonyer Logged by: Nick Ellison

De	Depth Below VISUAL SOIL CLASSIFICATION				Qp	Qu	MC	PID	
Surf	ace/Elev. (ft)	Ground Surface Elevation: 44.3	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	Hemarks
-	-	6"± Dark brown Sandy CLAY, very moist (Topsoil)	1-AU	•	-	-	17		
'	43.3								-
2-	42,3	Brown Clavey SAND to Silty SAND, little gravel, moist							-
3	41.3								
4-	40.3		2-88	18	-	-	8		_
5 -	39.3								
		Reddish brown Clayey SAND to Silty SAND, very moist	0.00	01					
	36.3		3-35	21			8	-	
7	37.3								
8	36.3 —	Light brown fine SAND, moist	100	11			4 77		,
9-	35.3		4-35		-	<u> </u>			
10 -	34.3 -								
	33.3	· · · · · · · · · · · · · · · · · · ·	5.55						-
	-								
12-4	32,3								
13-	31.3								
14	30.3								<u>⊻</u> _
15 -	29.3 -								
	28.3	Light brown SAND, moist to wet	6-55	19			18		L.
-		ŀ							-
" -	27.3								1
18	26.3								_
19	25.3								
20 -	24.3								
21	23.3	ſ	7-SS	16		-	26	-	1
		End of Boring: 211/2'				/			
Notes:		<u> </u>							
Water Le	ovel / Caving (	Dbservations:	Additional	Comm	ents:				
Wa	ater Level _{During}	Drilling: 14 ± ft (El. 30.3±) $\bigvee$	'N value ma	ıy be el	evated	due to	cobbles	and bo	ulders
Wate	er Level _{Upon Con} aved at	$\frac{dry}{dry} = \frac{16 + ft}{61 + 28 + 24}$	Doring Las	ation O	ttoot				
	aveu al Upon Con	pleion. ID $\pm$ it (EI. 20.3 $\pm$ )	ooring Loo	ation C	mset: r	IDUð			ĺ.



## Location: 2001 South Prairie Avenue Waukesha, WI

Project No.: 7-83087 Drill Date: July 17, 2008 Drilled by: Pete Rotaru Logged by: Toshi White

Depth Below VISUAL SOIL CLASSIFICATION Sample N Qp Qu MC PID Remarks								Bemarks	
Surfa	ce/Elev. (ft)	Ground Surface Elevation: 46.1	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	
1	45.1	12"± 10YR, 2/1, Black, GRAVELLY SILTY CLAY LOAM, roots (1, f), 1, pl, thin, mfi-Moist (FILL)	1-AU	13	-	-	9	•	
2	44.1 43.1	10YR, 4/4, Dark Yellowish Brown, GRAVELLY SAND, 0, gr, f, mí Moist	2-SS	24	•		3	-	
4	42.1 — - 41.1 —		3-SS	14	-	•	5	-	
6 - 7	40. 1	10YR, 6/3, Very Pale Brown, LOAMY FINE SAND, with 10YR, 6/4, Light Yellowish Brown, f, 1, f, streaks, 0, gr, vf, ml-Moist	4-SS	14		-	· 18	-	
8-	38.1	Note A						<b></b>	
- 9 -	37.1 —	10YR, 6/4, Light Yellowish Brown, SILT LOAM, with 10YR, 4/4, Dark Yellowish Brown, f, 1, d, streaks, 1, pl, thin, mfr-Moist	5-88	15	-	-	7	-	-
10 — - 	36.1	10YR, 6/4, Light Yellowish Brown, FINE SANDY LOAM, 1, pl, thin, mvfr-Moist	6-SS	8	-	•	20	-	
12  	34.1	· · · · · · · · · · · · · · · · · · ·	7·S\$	19	-	•	12	-	
	31.1	10YR, 6/4, Light Yellowish Brown, LOAMY FINE SAND, 1, pl,	8-SS	16	-		21	-	⊻ -
17	29.1	thin, mvfr-Molst to Wet	9-SS	13	-	•	22	-	-
19 19 20	27.1		10-SS	11	-	-	20	-	
		End of Boring: 20'							
Notes:	Note A : 10	/R, 6/4, Light Yellowish Brown, FINE SANDY LOAM, 0, m, mvfr-Very	Moist		- - -		<u> </u>		
Water I e	vel / Caving (	Observations:	Additional	Comm	ents:				
w	ater Level Durin	a Drilling: 15 ± ft (El. 31.1±) ⊻	*N value m	ay be el	levated	due to	cobbles	s and boi	ulders
Wat C	er Level _{Upon Co} aved at _{Upon Co}	$\frac{1}{12 \pm ft} (EI. 34.1 \pm)$	Boring Lo	ocation	Offset:	none			


## Location: 2001 South Prairie Avenue Waukesha, WI

Project No.: 7-83087 Drill Date: July 18, 2008 Drilled by: Pete Rotaru Logged by: Toshi White

Depth Below Surface/Elev. (ft)		VISUAL SOIL CLASSIFICATION Ground Surface Elevation: 42.3		N	Qp	Qu	MC	PID	Remarks	
	1			(1997)	(((ST)	(tst)	(%)	[(ppm)]		
1	41.3	6"± 10YR, 2/1, Black, GRAVELLY SILTY CLAY LOAM, roots (1, f), 1, pl, thin, mfi-Moist (FILL)		8	-		21	1		
2	40.3	10YR, 4/3, Brown, FINE SANDY LOAM, with 10YR, 6/3, Pale Brown, f, 1, f, streaks, 1, sbk, f, mvfr-Moist (FILL)								
3 4	39.3	10YR, 4/2, Dark Grayish Brown, FINE SANDY LOAM, with 10YR, 4/6, Dark Yellowish Brown, f, 2, d, streaks, roots	2-55	9	-	-	12	-	-	
5 _	37.3 -	(1, vf), 1, sbk, mvfr-Moist	3-SS	5	-	-	15	-	_	
6 -	36.3 <del></del>	10YR, 6/4, Light Yellowish Brown, LOAMY FINE SAND, 1, pl,								
7	35.3 — -	very thin, mytr-Moist	4-SS	10	-	-	5	-		
°	34.3		6.00	(2)						
10	32.3		5-88	١Z	-	-		-	<u>v</u> ]	
11	31.3	10YR, 6/4, Light Yellowish Brown, FINE SAND, 0, gr, f, ml-Moist to Wel	6-SS	14	-	-	19			
12	30.3									
13	29.3			16	-	-	20		-	
14	28.3		0.00	17			24			
	26.3		0-33		-		21	_		
17	25.3	10YR, 5/3, Brown, SAND, 0, gr, f, ml-Wet	9-SS	22	-	-	20	-	-	
16	24.3									
19	23.3		10-SS	20	-	-	16	•	  -	
		End of Boring: 20'								
Votes:	lotes:									
Nater Lov	vel / Caving O	bservations:	Additional /	lommo	nte		· · · · ·			
Wa	iter Level _{During} O	Dolling: 10 ± ft (El. 32.3±) V	'N value ma	y be ele	vated o	due to c	obbles	and boul	ders	
Wale	r Level Upon Com	pateion: dry			•					
Ca	Caved at Upon Completion: 13 ± ft (El. 29.3±) Reason for Offset: sprinkler system									



### Location: 2001 South Prairie Avenue Waukesha, WI

Project No.: 7-83087 Drill Date: July 18, 2008 Drilled by: Steve Gonyer Logged by: Nick Ellison

Dapth Below Surface/Elev. (ft)		VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	MC	PID	Romarko
		Ground Surface Elevation: 40.0		(bpf)	(tsf)	(tsf)	(%)	(ppm)	
1	39.0	Note A		-	-		15	-	
2 -	38.0 — - 37.0 —	10YR, 3/1, Very Dark Gray, LOAM, with 2.5YR, 2.5/4, Dark Reddish Brown, f, 1, f, streaks, 1, pl, thin, mfr-Moist (FILL)	2-SS	16	_	-	7	-	
4		10YR, 5/4, Yellowish Brown, GRAVELLY SAND, 0, gr, f, ml- moist (FILL)							
5	35.0	10YR, 4/3, Brown and 10YR, 3/1, Very Dark Gray, SILTY CLAY	3-SS	4	-	•	15	-	
- 7 	33.0		4-SS	28	-	-	7	Ŧ	-
8 9	32.0 31.0	10YR, 5/4, Yellowish Brown, GRAVELLY SAND, with 5YR, 4/4, Reddish Brown, f. 1, f. spots, 0, or, f. ml-Moist, with 10YR, 5/3	5-SS	25	-	•	5	-	
10 11	、 <b>30.0</b> 29.0	Brown, SANDY LOAM, with 10YR, 7/1, Light Gray, and 10YR, 4/4, Dark Yellowish Brown, f, 1, f, streaks, 1, sbk, vf, mvfr-Moist (~ 2" thick layers @ 9")	6-SS	23	-	-	4		
12 <u>-</u> - 13 <u>-</u>	28.0 — - 27 0 —		7-SS	18	-		10	-	
- 14	26.0	10YR, 5/6, Yellowish Brown, FINE SAND, with 7.5YR, 4/6, Strong Brown, f, 1, f, streaks, 0, gr, f, ml-Moist	<u></u>						⊻ _
15 -	25.0	10YR, 6/3, Pale Brown, VERY FINE SANDY LOAM, 0, m, mvfr- Wet	8-SS	6	-	-	28	•	-
10 17 18	23.0	10YR, 5/3, Brown, FINE SAND, 0, gr, f, ml-Wet	9-SS	5	-		23	-	
19 20	21.0 21.0 20.0	10YR, 6/3, Pale Brown, FINE SANDY LOAM, 0, m, mvfr-Wet	10-SS	8	-	-	25		
,		End of Boring: 20'							
Notes:	Note A : 4"±	10YR, 2/1, Black, GRAVELLY SILTY CLAY LOAM, roots (1, f), 1, pl,	thin, mfi-Mc	bist (FILI	L)				
Water Le	vel / Caving C	Dbservations:	Additional	Comm	ents:	<b>.</b>			1-1
W	ater Level Durin	_{9 Driffing} : 14 ± ft (El. 26±) ⊻	"N value ma	ay be el	evated	due to c	cobbles	and bou	uders
Wate C	Water Level Upon Completion:       dry         Caved at Upon Completion:       13 ± ft (El. 27±)         Boring Location Offset:       none								



Location: 2001 South Prairie Avenue Waukesha, WI Project No.: 7-83087 Drill Date: July 21, 2008 Drilled by: Pete Rotaru Logged by: Toshi White

Depth Below		VISUAL SOIL CLASSIFICATION	Sample	N	Qp	Qu	MC	PID	Bomarke
Surfa	ace/Elev. (ft)	Ground Surface Elevation: 41.1	No.	(bpf)	(tsf)	(tsf)	(%)	(ppm)	Hemarks
		Note A	1-AU.	-	-	-	25		•
-	40.1-	Dark brown to black Sandy CLAY, moist (Possible Buried Topsoil)							-
-	39.1	Brown Silty SAND, very moist (Possible FILL)							
-	-		2-SS	7	-		11	-	
	064	Prown motified Clauser SAMD, maint							-
	30.1	brown mottled Clayey SAND, moist	· ·						
6	35.1		3-SS	5	-	-	14	-	
	·	End of Boring: 61/21							
	Note A : 4 3 8"3	Dark brown Silty CLAY, little sand, moist (Topsoil FILL) Brown Silty SAND, little silty clay, moist (FILL)							
Vater Le Wa	vel / Caving (	Deservations:	Additional (	Comme v be ele	ints:	tue to c	obblee	and how	Irlers
Wate	r Level Upon Col	11 10,00 (10	, <i>oo</i> oo			000103			
Ca	aved at _{Upon Cor}	npletion: 4 ± ft (El. 37.1±)	Boring Loo	ation C	)ffset: n	ione			



## Location: 2001 South Prairie Avenue Waukesha, WI

Project No.: 7-83087 Drill Date: July 21, 2008 Drilled by: Pete Rotaru Logged by: Toshi White

De Surta	pth Below ace/Elev. (ft)	VISUAL SOIL CLASSIFICATION Ground Surface Elevation: 39.9	Sample No.	N (bpf)	Qp (tsf)	Qu (tsf)	MC (%)	PlD (ppm)	Remarks
		13"± Dark brown to black Silty CLAY, moist (Topsoll FILL)	1-AU		-	•	24		
-	37.9	Brown Clayey SAND, moist (FILL)							
	-	Dark brown and dark gray Sandy CLAY, very moist (Buried Topsoil)							
3-	3b.9		2-SS	11	2.25	•	17	-	-
4 . •	35.9	Brown mottled Silty CLAY, little sand, trace gravel, moist				-			
5 -	34.9		-				A		
6	33.9	Light brown mottled SILT, moist	3-SS	7		•	13		
		End of Boring: 6½							
Nater Level / Caving Observations:       Additional Comments:         Water Level During Drilling:       dry         Water Level Upon Completion:       dry         Caved at Upon Completion:       3.5 ± ft (El. 36.4±)    Boring Location Offset: none								ulders	





	(4	2)2	layer "	10,00,000 -	1 + 1+	-, 10 11-y-	"'>- `	·		
									<b>.</b> .	.,
					FILL	to Possile	be FILL	to 84'	' <i>Wa</i>	ter@/68"
	Property (	Owner 🖌	Veldal (	Manu fachump	Parcel ID #_				Page <u>s</u>	2.012
	3	Obs. # 🖊	Boring B Pit Grou	ind surface elev. <u>40</u>	ft.	Depth to limiting	factor <u>/5</u>	<u>6</u> in.		Hydraulic App. Rate
	Horizon	Depth in.	Dominant Color Munsell	Redox Description Qu. Sz. Cont. Color	Texture	Structure Gr. Sz. Sh.	Consistence	roots	% Rock Frag.	
	1	0-4	10YR741		grsicl	1 thinpl	mfi	14	$\geq 15$	0.04
	2	1-36	10412,3/1	F F 2517-12.514	l	1 thinpl	Mfr		<15 NE	0.29
	24	48-84	10484/283/1		sicl	1 things	Mifi		<15	0.04
$\omega$	5	84-154	10YR, 5/4	f1f,5YR,414	grs	Ofgr	invfr	-	>15	3.60
51	6	156-168	108R, 5/6	FIF, 7.54R,416	<u>FS</u> VuFeR	ofer	myfr	•	×15 ×15	0,5
	- 43	192-216	10414,5/3	te	- FS	0fgr	me		< 1.5	0.5
( 	Horizon	Depth	Dominant Color	Redox Description	Texture	Structure	Consistence	Boundary	% Rock Frag.	Hydraulic App. Rate Inches/Hr
		in.	Munsell	Qu, Sz. Cont. Color		Gr. Sz. Sh.			Prag.	
ļ	<u> </u>			<u> </u>						
ľ	uthatu									
ļ										
ļ										
										(tud) - 1 1
L F		<u> </u>	Boring	<u>,</u>	[	<u></u>	<u> </u>	L		<u>kynnessen (* 1997)</u>
L	0	DS, #	Pít Grou	nd surface elev	ft. I	Depth to limiting	factor	in.		Hydraulic App. Rate
ſ	Horizon	Depih in	Dominani Color Munsell	Redox Description Ou, Sz. Cont. Color	Texture	Structure Gr. Sz. Sh.	Consistence	Boundary	‰ коск Frag.	
-										
ľ										
-						·				
╞										
		<u></u>								
F										

.

8

3

# **GENERAL NOTES**

# SAMPLE IDENTIFICATION

Visual soil classifications are made in general accordance with the Unified Soil Classification System on the basis of textural and particle size categorization, and various soil behavior characteristics. Visual classifications should be substantiated by appropriate laboratory testing when a more exact soil identification is required to satisfy specific project applications criteria.

		PARTI	CLE SIZE±		
Boulders: Cobbles: Gravel:	8 inches 3 to 8 inches 5 mm to 3 inches	Coarse Sand: Medium Sand: Fine Sand:	2 to 4 mm 0.42 to 2 mm 0.074 to 0.42 mm	Silt: Clay:	0.005 to 0.074 mm -0.005 mm

RB:

Roller Bit

PI: Plasticity Index

## DRILLING & SAMPLING SYMBOLS

SS:	Split-spoon, 2" O.D. by 1 3/8" I.D.
ST:	Shelby Tube, 2" O.D. or 3" O.D., as noted in text

AU:	Auger Sample	WS:	Wash Sample
DB:	Diamond Bit	BS:	Bag Sample
CB:	Carbide Bit	HA:	Hand Auger

# SOIL PROPERTY SYMBOLS

N: Standard penetration count, indicating number of blows of a 140 lb. hammer with a 30 inch drop, required to advance a split-spoon sampler one foot.

PL: Plastic Limit

- Qu: Unconfined compressive strength, tons per square foot (tsf)
- Qp: Calibrated hand penetrometer resistance, tsf
- MC: Moisture content, %
- LL: Liquid Limit

Dd: Dry Density, pounds per cubic foot (pcf)

PID: Photoionization Detector (Hnu meter) volatile vapor level, ppm

# SOIL RELATIVE DENSITY AND CONSISTENCY CLASSIFICATION

NON-COF	<b>HESIVE SOILS</b>	COHESIVE SOILS					
Classifier	N-Value Range	Classifier	Qu Range (tsf)	N-Value Range			
very loose loose medium dense dense very dense	0-3 3-7 7-15 15-38 38+	very soft soft medium stiff stiff very stiff hard	0-0.25 0.25-0.5 0.5-1.0 1.0-2.0 2.0-4.0 4.0+	0-2 2-5 5-10 10-14 14-32 32+			

# GROUNDWATER

Approximate Groundwater level at time noted on soil boring log, measured in open borehole unless otherwise noted. Groundwater levels often vary with time, and are affected by soil permeability characteristics, weather conditions, & lateral drainage conditions.